[size=150]State the degree and end behavior of [math]f(x)=\text{-}x^3+5x^2+6x+1[/math].[/size]
[size=150]The graph of a polynomial function [math]f[/math] is shown. [/size][br][img][/img] [br]Select [b]all[/b] the true statements about the polynomial.
[size=150]Write the sum of [math]5x^2+2x-10[/math] and [math]2x^2+6[/math] as a polynomial in standard form.[/size]
[size=150]State the degree and end behavior of [math]f(x)=4x^3+3x^5-x^2-2[/math].[/size]
Select [b]all[/b] the polynomial functions whose graphs have x-intercepts at [math]x=4,\text{-}\frac{1}{4},\text{-}2[/math].