Explore the applet below and follow the steps to learn [b]how to[/b] create the incircle of a triangle in the [url=https://www.geogebra.org/geometry]GeoGebra Geometry App.[/url][color=#333333] [br][br][/color]
[list=1][*]Create an arbitrary [icon]https://tube.geogebra.org/images/ggb/toolbar/mode_polygon.png[/icon] [i]Triangle[/i] [i]ABC.[/i][br][/*][*]Construct the [icon]https://www.geogebra.org/images/ggb/toolbar/mode_angularbisector.png[/icon] [i]Angle Bisector[/i] for two angles of the triangle.[br][/*][*]Create [icon]https://tube.geogebra.org/images/ggb/toolbar/mode_intersect.png[/icon][i] Intersection Point[/i] [i]D[/i] of the two angle bisectors.[br][/*][*]Create a [icon]https://www.geogebra.org/images/ggb/toolbar/mode_orthogonal.png[/icon][i] Perpendicular Line [/i]to one side of the triangle, through point [i]D[/i].[br][/*][*]Create [icon]https://tube.geogebra.org/images/ggb/toolbar/mode_intersect.png[/icon][i]Intersection Point[/i] [i]E[/i] of the perpendicular line [i]h[/i] and the chosen side of the triangle.[br][/*][*]Construct the [icon]https://www.geogebra.org/images/ggb/toolbar/mode_circle2.png[/icon] [i]Incircle with Cen[/i]ter [i]D[/i] through point [i]E.[/i][br][/*][*][icon]https://www.geogebra.org/images/ggb/toolbar/mode_showhideobject.png[/icon] [i]Hide[/i] the three auxiliary lines used for the construction.[br][/*][*]Connect points [i]D[/i] and [i]E[/i] using a [icon]https://www.geogebra.org/images/ggb/toolbar/mode_segment.png[/icon] [i]Segment[/i] in order to display the radius of the incircle.[br][/*][*]Show the right [icon]https://www.geogebra.org/images/ggb/toolbar/mode_angle.png[/icon] [i]Angle[/i] between the incircle's radius and the corresponding side of the triangle.[/*][*]Select the [icon]https://tube.geogebra.org/images/ggb/toolbar/mode_move.png[/icon] [i]Move[/i] tool and drag the vertices of the triangle in order to check if your construction is correct.[/*][/list]