[img][/img][br][math]b[/math] = base of triangle, [math]h[/math] = triangle height, [math]l[/math] = prism length, [math]a,b,c[/math] = triangle side lengths.[br][br][img][/img]
[color=#0000ff][u]https://www.geogebra.org/classic/y66smwum[/u][/color]