[size=150][url=https://www.geogebra.org/m/vdthAjFW][b]GIR RAJOLA[/b][/url][/size][br][br]En aquesta construcció feta per[color=#1e84cc] [url=https://www.geogebra.org/u/b.ancochea+i.sorigu%C3%A9]Bernat Ancochea i Isabel Sorigué[/url] [/color]pot veure com gira una rajola a partir d'un centre de gir i un punt per determinar l'angle d'aquest.[br][br]En aquesta construcció pots:[br][list][*]Mou el [b]punt vermell[/b] i veuràs com gira.[/*][*]També pots modificar el punt [b]rosa[/b], que és el centre de gir.[/*][/list]
[b][url=https://www.geogebra.org/m/mmff9wv3]GIR D'UN POLÍGON REGULAR[/url][/b][br][br]En aquesta construcció feta per la [url=https://www.geogebra.org/u/mviguera][color=#1e84cc]Maria[/color][/url], es pot veure com quan definim un gir, també hem de tenir en compte el sentit de gir; sentit horari (agulles del rellotge) o sentit antihorari.[br][br]En aquesta construcció podeu veure que s'utilitzen:[br][list][*]Caselles de control [icon]/images/ggb/toolbar/mode_showcheckbox.png[/icon] per determinar els diferents sentits de gir.[/*][*]Barra lliscant [icon]/images/ggb/toolbar/mode_slider.png[/icon] per determinar l'angle de gir.[/*][*]Barra lliscant per mostrar el moviment del gir.[/*][/list][br][br]En aquest document es mostra com gira un polígon a partir d'un centre amb un angle donat.[br][i][color=#999999]Pots modificar l'amplitud de l'angle que vols girar i veure com gira el polígon... (barres lliscants).[br]També pots modificar el centre de gir i la posició i mesures del polígon regular (punts vermells).[/color][/i]
PREGUNTES que et podries fer al veure aquesta construcció...[br][list][*]El centre de gir pot ser qualsevol punt?[/*][*]Què passa si el centre és un dels vèrtexs del polígon?[/*][*]Tots els vèrtexs del polígon giren el mateix angle?[/*][*]Els polígons són iguals o semblants?[/*][*]Els costats són paral·lels?[/*][*]Quin angle has de girar perquè dos costats semblants siguin paral·lels?[/*][/list]
[size=150][b][url=https://www.geogebra.org/m/gHgzAX2f#material/Se9fxfTB]Teselaciones de M.C. Escher: División regular del plano nº 123[/url][/b][/size][br][br][size=100]Tot seguit us mostro una animació d'un mosaic de M.C. Escher, feta per[url=https://www.geogebra.org/u/manuel+sada][color=#1e84cc]Manuel Sada[/color][/url] on podreu veure una aplicació d'un gir amb altres transformacions.[/size]
Detén la animación cuando el deslizador esté en su posición más baja.[br][list=1][*]¿A qué tipo de polígono se ha llegado? Describe la malla o trama oculta en la que Escher se apoyó para dibujar su grabado.[br][br]Vuelve a activar la animación y describe los distintos tipos de isometría que observes:[/*][*]¿Encuentras alguna traslación? Elige alguna y descríbela concretando cuál es su vector de traslación.[br][/*][*]¿Encuentras ejes de simetría? ¿Dónde?[br][/*][*]¿Y giros? ¿Con qué centro y qué ángulo?[br][br]Detén la animación en el punto más elevado del deslizador. Activa la casilla para "Ver puntos" y experimenta con nuevas figuras.[/*][/list]