Wir betrachten zum Abschluss den Spezialfall der Pyramide mit quadratischer Grundfläche. In den zwei folgenden Applets wird diese jeweils zu einem Würfel bzw. Quader ergänzt. Untersuche die beiden Applets und erkläre im Anschluss, warum beide mit der Volumenformel vereinbar sind.
Im ersten Applet wird die Pyramide mit zwei weiteren Pyramiden zu einem Würfel ergänzt, was genau die Volumenformel widerspiegelt. (Es gilt: [math]V_{Würfel}=a\cdot a\cdot a=G\cdot h[/math])[br][br]Im zweiten Applet werden insgesamt 6 Pyramiden zu einem Quader ergänzt. Der Quader hat als Höhe die doppelte Pyramidenhöhe. Damit folgt: [br][math]V_{Quader}=G\cdot2h=a\cdot a\cdot2h[/math][br]und [math]V_{Pyramide}=\frac{1}{6}\cdot V_{Quader}=\frac{1}{6}\cdot G\cdot2h=\frac{1}{3}\cdot G\cdot h[/math]