[b]The Distance Formula:[/b] The distance between points (x[sub]1,[/sub]y[sub]1[/sub]) and (x[sub]2[/sub],y[sub]2[/sub]) is given by the formula [math]d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-x_2\right)^2}[/math] Note: This is really the Pythagorean Theorem in a different form.
[list=1][*]Plot the points (0,0) and (-4,3).[/*][*]Measure the distance between the two points.[/*][/list]
What distance did you get above? Find the distance manually (by calculating) to check your answer from Geogebra.
To find the midpoint of a segment on a coordinate plane, find the average of your x and an average of your y values.[br][math]\left(x_m,y_m\right)=\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)[/math]
[list=1][*]Plot the points (-1,-3) and (3, 2).[/*][*]Connect the points with a segment and find the midpoint.[/*][/list]
What were the coordinates of the midpoint you calculated above?
[list=1][*]Draw a graph that has symmetry with respect to the x-axis by inputting the equation in the (+) sign.[/*][*]Draw another graph that has symmetry with respect to the y-axis by inputting the equation in the (+) sign. You should use different name so that both graphs appear (for example: f(x) for no.1 and g(x) for no. 2).[br][/*][/list]