Functions: Input and Output (I)

Evaluating Functions Using Graphs (Quiz)

Sequences (Dynamic Illustrator)

[b]A[/b] [color=#38761d][b]sequence[/b][/color][b] is a function whose[/b] [color=#38761d][b]domain is the set of positive (or sometimes, nonnegative) integers[/b][/color]. [br][br]Recall the domain of a function is the set of all values that can be inputted into the function. [br][br]The following applet dynamically and graphically illustrates the meaning of a [color=#38761d][b]sequence[/b][/color]. [br]Feel free to re-author the [color=#38761d][b]explicit formula for this sequence[/b][/color] in the upper left-hand corner. [br]

Function Behavior

Feel free to start by putting the 2 white points anywhere you'd like. [br]Then slide the slider. [br][br]Please answer the questions that follow.
1.
[b][color=#0000ff]How would you describe the pieces of the function that are BLUE? Explain. [/color][/b][br]
2.
[b][color=#ff0000]How would you describe the pieces of the function that are RED? Explain. [/color][br][/b]
3.
[b]How would you describe the pieces of the function that are BLACK? Explain. [/b]
Quick (Silent) Demo

Domain & Range Illustrator

Average Rate of Change of a Function: Dynamic Illustration

The average rate of change of a continuous function [i]f[/i] from input value [i]x[/i] = [i]a[/i] to input value [i]x[/i] = [i]b[/i] is given by [math]f_{ave}=\frac{f\left(b\right)-f\left(a\right)}{b-a}[/math]. [br][br]The applet below provides a dynamic visual interpretation of this expression. [br][br]Interact with this applet for a few minutes. [br][color=#444444][b]You can input different functions in the input box in the upper right-hand corner. [/b][/color][b]You can also adjust the input values [i]a[/i] and [i]b[/i] using the sliders or their respective input boxes. [/b]

Sketching Graph Models

[b][color=#0000ff]Students:[/color][/b][br][br]Use these templates to draw general sketches of each scenario listed on the scenarios page given to you at the beginning of class. Then submit either via our GeoGebra Group or Google Classroom.
SCENARIO A
SCANARIO B

Completing the Square (1)

Quick Demo (BGM: Andy Hunter)

Functions Resources

[list][*][b][url=https://www.geogebra.org/m/k6Dvu9f3]Interpreting Functions[/url][/b][/*][*][b][url=https://www.geogebra.org/m/uTddJKRC]Building Functions[/url][/b][/*][*][b][url=https://www.geogebra.org/m/GMvvpwrm]Linear, Quadratic, and Exponential Functions[/url][/b][/*][*][b][url=https://www.geogebra.org/m/aWuJMDas]Trigonometric Functions[/url][/b][/*][/list]
Half-life function: Quick Exploration. (Large point & slider moveable.)
What does it mean for a function to be odd? (Points moveable.)

Geometry Resources

[list][*][b][url=https://www.geogebra.org/m/z8nvD94T]Congruence (Volume 1)[/url][/b][/*][*][b][url=https://www.geogebra.org/m/munhXmzx]Congruence (Volume 2)[/url][/b][/*][*][b][url=https://www.geogebra.org/m/dPqv8ACE]Similarity, Right Triangles, Trigonometry[/url][/b][/*][*][b][url=https://www.geogebra.org/m/C7dutQHh]Circles[/url][/b][/*][*][b][url=https://www.geogebra.org/m/K2YbdFk8]Coordinate and Analytic Geometry[/url][/b][/*][*][b][url=https://www.geogebra.org/m/xDNjSjEK]Area, Surface Area, Volume, 3D, Cross Section[/url] [/b][/*][*][b][url=https://www.geogebra.org/m/NjmEPs3t]Proof Challenges[/url]  [/b][/*][/list]
What phenomenon is dynamically being illustrated here? (Vertices are moveable.)
What phenomenon is dynamically being illustrated here? (Vertices are moveable.)

Información