IM Alg1.6.15 Lesson: Vertex Form

What do you notice? What do you wonder?
[table][tr][td]Set 1:[/td][td]Set 2:[/td][/tr][tr][td][math]f(x)=x^2+4x[/math][br][br][math]g(x)=x(x+4)[/math][br][br][math]h(x)=(x+2)^2-4[/math][/td][td][math]p(x)=\text-x^2+6x-5[/math][br][br][math]\\q(x)=(5-x)(x-1)[/math][br][br][math]r(x)=\text-1(x-3)^2+4[/math][/td][/tr][/table]
Here are two sets of equations for quadratic functions you saw earlier.
[size=150]In each set, the expressions that define the output are equivalent. [/size][br][br][table][tr][td]Set 1:[/td][td]Set 2:[/td][/tr][tr][td][math]f(x)=x^2+4x[/math][br][br][math]g(x)=x(x+4)[/math][br][br][math]h(x)=(x+2)^2-4[/math][/td][td][math]p(x)=\text-x^2+6x-5[/math][br][br][math]\\q(x)=(5-x)(x-1)[/math][br][br][math]r(x)=\text-1(x-3)^2+4[/math][br][br][/td][/tr][/table][br][br][size=150]The expression that defines [math]h[/math] is written in [b]vertex form[/b]. We can show that it is equivalent to the expression defining [math]f[/math] by expanding the expression:[/size][br][br][center][math]\displaystyle \begin {align} (x+2)^2-4 &=(x+2)(x+2)-4\\ &=x^2+2x+2x+4-4\\ &=x^2+4x\\ \end{align}[/math][/center][br]Show that the expressions defining [math]r[/math] and [math]p[/math] are equivalent.
[size=150]Here are graphs representing the quadratic functions.[/size][br][br][table][tr][td]Graph of [math]h[/math] [/td][td]Graph of [math]r[/math] [br][/td][/tr][tr][td][img][/img][/td][td][img][/img][br][/td][/tr][/table][br]Why do you think expressions such as those defining [math]h[/math] and [math]r[/math] are said to be written in vertex form?[br]
Using graphing technology, graph y=x².
[size=150]Then, add different numbers to [math]x[/math] before it is squared (for example, [math]y=\left(x+4\right)^2[/math], [math]y=\left(x-3\right)^2[/math]) and observe how the graph changes. [/size][br]Record your observations.[br]
[size=150]Graph [math]y=\left(x-1\right)^2[/math]. Then, experiment with each of the following changes to the function and see how they affect the graph and the vertex:[/size][br][br][list][*]Adding different constant terms to [math]\left(x-1\right)^2[/math] (for example: [math]\left(x-1\right)^2+5[/math], [math]\left(x-1\right)^2-9[/math]).[br][/*][*]Multiplying [math]\left(x-1\right)^2[/math] by different coefficients (for example: [math]y=3\left(x-1\right)^2[/math], [math]y=-2\left(x-1\right)^2[/math]).[/*][/list]
Without graphing, predict the coordinates of the vertex of the graphs of these quadratic functions, and predict whether the graph opens up or opens down. Ignore the last row until the next question.
Use graphing technology to check your predictions. If they are incorrect, revise them. Then, complete the last row of the table.
[img][/img][br][br]What is the vertex of this graph?[br]
Find a quadratic equation whose graph has the same vertex and adjust it, if needed, so that it has the graph provided.[br]

IM Alg1.6.15 Practice: Vertex Form

[size=150]Select [b]all[/b] of the quadratic expressions in vertex form.[/size]
Here are two equations. One defines function m and the other defines function p. Show that the expressions defining m and p are equivalent.
What is the vertex of the graph of [math]m[/math]? Explain how you know.[br]
What are the [math]x[/math]-intercepts of the graph of [math]p[/math]? Explain how you know.[br]
For each equation, write the coordinates of the vertex of the graph that represents the equation.
[math]y=\left(x-3\right)^{^2}+5[/math]
[img][/img][br][br]Which equation is represented by the graph?[br]
[math]y=\left(x+7\right)^{^2}+3[/math]
[math]y=\left(x-4\right)^{^2}[/math]
[math]y=x^2-1[/math]
[math]y=2\left(x+1\right)^{^2}-5[/math]
[math]y=-2\left(x+1\right)^{^2}-5[/math]
[size=150]For each function, write the coordinates of the vertex of its graph and tell whether the graph opens up or down.[/size]
Here is a graph that represents y=x².
[br][img][/img][br][br]Describe what would happen to the graph if the original equation were modified as follows:[br][br][math]y=-x^2[/math]
[math]y=3x^2[/math]
[math]y=x^2+6[/math]
Sketch the graph of the equation y=-3x²+6 on the same coordinate plane as y=x².
Here are four graphs. Match each graph with a quadratic equation that it represents.
Noah is going to put $2,000 in a savings account.
[size=150]He plans on putting the money in an account and leaving it there for 5 years. He can put the money in an account that pays 1% interest monthly, an account that pays 6% interest every six months, or an account that pays 12% interest annually.[/size][br][br]Which account will give him the most money in his account at the end of the 5 years?
The table shows some input and output values of function f.
[img][/img][br][br]Describe a possible rule for the function by using words or by writing an equation.[br]

Information