IM Geo.6.2 Lesson: Transformations as Functions

Mentally find the coordinates of the image of A under each transformation.
[img][/img][br]Translate [math]A[/math] by the directed line segment from [math]\left(0,0\right)[/math] to [math]\left(0,2\right)[/math].
Translate [math]A[/math] by the directed line segment from [math]\left(0,0\right)[/math] to [math]\left(-4,0\right)[/math].
Reflect [math]A[/math] across the [math]x[/math]-axis.
Rotate [math]A[/math] 180 degrees clockwise using the origin as a center.
[size=150]For each point [math]\left(x,y\right)[/math], find its image under the transformation [math]\left(x+12,y-2\right)[/math].[/size][br][br][math]A=\left(-10,5\right)[/math][br][math]B=\left(-4,9\right)[/math][br][math]C=\left(-2,6\right)[/math]
Next, sketch triangle [math]ABC[/math] and its image on the grid above. What transformation is [math]\left(x,y\right)\longrightarrow\left(x+12,y-2\right)[/math]?[br]
For each point (x,y) in the table, find (2x,2y).
Next, sketch the original figure (the [math]\left(x,y\right)[/math] column) and image (the [math]\left(2x,2y\right)[/math] column). What transformation is [math]\left(x,y\right)\longrightarrow\left(2x,2y\right)[/math]?[br]
Here are some transformation rules.
Apply each rule to quadrilateral [math]ABCD[/math] and graph the resulting image. Then describe the transformation.[br][list][*]Label this transformation [math]Q[/math]: [math]\left(x,y\right)\longrightarrow\left(2x,y\right)[/math][br][/*][*]Label this transformation [math]R[/math]: [math]\left(x,y\right)\longrightarrow\left(x,-y\right)[/math][br][/*][*]Label this transformation [math]S[/math]: [math]\left(x,y\right)\longrightarrow\left(y,-x\right)[/math][br][/*][/list]
[list][*][size=150]Plot the quadrilateral with vertices [math]\left(4,-2\right)[/math], [math]\left(8,4\right)[/math], [math]\left(8,-6\right)[/math], and [math]\left(-6,-6\right)[/math]. Label this quadrilateral [math]A[/math].[br][/size][/*][*][size=150]Plot the quadrilateral with vertices [math]\left(-2,4\right)[/math], [math]\left(4,8\right)[/math], [math]\left(-6,8\right)[/math], and [math]\left(-6,-6\right)[/math]. Label this quadrilateral [math]A'[/math].[/size][/*][/list][br]How are the coordinates of quadrilateral [math]A[/math] related to the coordinates of quadrilateral [math]A'[/math]?
What single transformation takes quadrilateral [math]A[/math] to quadrilateral [math]A'[/math]?[br]

IM Geo.6.2 Practice: Transformations as Functions

Match each coordinate rule to a description of its resulting transformation.
[size=150]Draw the image of triangle [math]ABC[/math] under the transformation [math]\left(x,y\right)\longrightarrow\left(x-4,y+1\right)[/math]. Label the result [math]T[/math].[br]Draw the image of triangle [math]ABC[/math] under the transformation [math]\left(x,y\right)\longrightarrow\left(-x,y\right)[/math]. Label the result [math]R[/math].[br][/size]
Here are some transformation rules. For each rule, describe whether the transformation is a rigid motion, a dilation, or neither.
[math]\left(x,y\right)\rightharpoondown\left(x-2,y-3\right)[/math]
[math]\left(x,y\right)\rightharpoondown\left(2x,3y\right)[/math]
[math]\left(x,y\right)\rightharpoondown\left(3x,3y\right)[/math]
[math]\left(x,y\right)\rightharpoondown\left(2-x,y\right)[/math]
[img][/img][br][size=150][br]Reflect triangle [math]ABC[/math] over the line [math]x=0[/math]. Call this new triangle [math]A'B'C'[/math]. Then reflect triangle [math]A'B'C'[/math] over the line [math]y=0[/math]. Call the resulting triangle [math]A''B''C''[/math].[/size][br][br]Which single transformation takes [math]ABC[/math] to [math]A''B''C''[/math]?
[size=150]Reflect triangle [math]ABC[/math] over the line [math]y=2[/math].[br]Translate the image by the directed line segment from [math]\left(0,0\right)[/math] to [math]\left(3,2\right)[/math].[/size][br][br]What are the coordinates of the vertices in the final image?
[size=150]The density of water is 1 gram per cm³. An object floats in water if its density is less than water’s density, and it sinks if its density is greater than water’s. [/size][size=150]Will a cylindrical log with radius 0.4 meters, height 5 meters, and mass 1,950 kilograms sink or float? Explain your reasoning.[/size]
[size=150]These 3 congruent square pyramids can be assembled into a cube with side length 3 feet. What is the volume of each pyramid?[/size][br][img][/img]
Reflect square ABCD across line CD.
What is the ratio of the length of segment [math]AA'[/math] to the length of segment [math]AD[/math]? Explain or show your reasoning.

Information