Ovaj radni list također je dio jedne ili više drugih knjiga. Izmjene će biti vidljive u svima njima. Želite mijenjati izvorni radni list ili stvoriti poseban primjerak umjesto toga?
Ovu aktivnost je izradio/la '{$1}'. Želite li izmijeniti original ili napraviti svoju kopiju u zamjenu?
Ovu aktivnost je izradio/la '{$1}' i nemate dozvolu za uređivanje. Želite li izraditi svoju kopiju i dodati je u knjigu?
What consecutive triangle parts need to be congruent in order to show that two triangles are congruent? These applets allow students to explore whether triangle relationships (SSS, AAA, SAS, HL, SSA, ASA, AAS) force triangles to be congruent or not. Are you able to create a non-congruent pair of triangles?
1. SSS - 3 pairs of congruent sides
2. AAA- 3 pairs of congruent angles
3. SAS- 2 Congruent Sides with Congruent Angle in Between
4. HL- 1 Pair of Legs Congruent, 1 Pair of Hypotenuses Congruent, ONLY for right triangles
5. SSA- 2 Congruent Sides with a Congruent Angle NOT in between
6. ASA- 2 Pairs of Congruent Angles with a Congruent Side in between
7. AAS- 2 Pairs of Congruent Angles with a Congruent Side NOT inbetween