Continuity at a Point

Explore the conditions under which a function [math]f\left(x\right)[/math] is continuous at a point [math]x_0[/math] in the domain of [math]f[/math].
Ready, Set, Practice!
If [math]\lim_{ x \to x_0 }f(x)[/math] exists and is finite, then [math]f\left(x\right)[/math] is continuous at [math]x_0[/math].[br]True or false?[br]Justify your answer, providing a counterexample if appropriate.
Given a function [math]f(x)[/math], whose domain is [math]D[/math], we know that [math]\lim_{ x \to x_0^- }f(x)=\lim_{ x \to x_0^+ }f(x)[/math] and that [math]x ∉D[/math].[br]Is the function continuous at [math]x_0[/math]?[br]Justify your answer, providing a counterexample if appropriate.
Describe the continuity of the function shown in the graph below.[br][br][img][/img][br][br][br]
Determine the domain of the function [math]f\left(x\right)=\sqrt{4-x}[/math] and verify analytically that it is continuous at [math]x_0=3[/math], then plot the graph of the function and observe its behaviour in the neighbourhood of [math]x_0=3[/math].[br][br]How can you use a graph to check if a function is continuous?
Plot the graph of the function [math]f(x) = \begin{cases} x+2 & \text{ if } x <1 \\ -x+1 & \text{ if } x \geq 1 \end{cases}[/math] and explain whether it is continuous at [math]x_0=1[/math].
Find the value of the parameter [math]a\in\mathbb{R}[/math] that makes the piecewise function [math]g(x) = \begin{cases} -x^2-4x-3 & \text{ if } x \leq -1 \\ 1+\frac{a}{x^2} & \text{ if } x>-1 \end{cases}[/math] continuous at [math]x_0=-1[/math].[br]Plot the graph of the continuous function that you have obtained.
Close

Information: Continuity at a Point