[size=150][b]A particle P moves along a straight line and passes throuh a fixed point [/b][i]O.[/i][b]Its velocity, [/b][i]v[/i] ms[sup]-1[/sup], [b]is given by [math]v=8+2t-t^2[/math], where [/b][i]t[/i] [b]is the time, in seconds, after passing through [/b][i]O.[br][Assume motion is to the right is positive.][br][/i][/size][br][size=150][b]Find[/b][b][br][br](a) the initial velocity, in ms[/b][sup]-1[/sup][b], of the particle,[/b][/size]
[size=150][b](b) the maximum velocity, in ms[/b][sup]-1[/sup][b], of the particle.[br][/b][/size]
[size=150][b](c) the value of [/b][i]t[/i][b] at which the particle [/b][i]P[/i][b] is at instantaneous rest,[/b][/size]
[size=150][b](d) the total distance, in m, travelled by particle [i]P[/i] in the first 6 seconds after passing through [/b][i][b]O.[/b][br][/i][/size]
[math]s=\frac{124}{3}[/math]