Prove that (1) [math]\Rightarrow[/math] (11) [math]\Rightarrow[/math] (7) [math]\Rightarrow[/math] (1). That is to say, (1), (7) and (11) are equivalent.
(1) [math]\Rightarrow[/math] (11): Obvious from the definition of invertible matrices.[br][br](11) [math]\Rightarrow[/math] (7): Assume (11), [math]AD=I[/math]. Then, for any [math]b[/math] in [math]\mathbb{R}^n[/math], we have[br][math](AD)b=Ib=b \Rightarrow A(Db)=b[/math][br]That is, [math]Db[/math] is a solution to the equation [math]Ax=b[/math].[br][br](7) [math]\Rightarrow [/math] (1): Assume (7). That is to say, the linear system corresponding to [math]Ax=b[/math] is consistent for any [math]b[/math]. Use the row reduction algorithm to transform the augmented matrix [math]\left( A \ | \ b \right)[/math] to the one in reduced echelon form. Assume there are fewer than n pivot positions, the bottom row of the augmented matrix in reduced echelon form must look like [math]\left( 0 \cdots 0 \ | \ \ast \right)[/math], where [math]\ast[/math] is a real number depending on the choice of [math]b[/math]. Since [math]b[/math] can be any column vector, we can choose it such that [math]\ast[/math] is a nonzero number i.e. contradicting the fact that the linear system is always consistant for any [math]b[/math]. Hence, [math]A[/math] must have n pivot positions i.e. (2) is true, which implies (1) by the previous result.