Characterizations of Invertible Matrices

The Invertible Matrix Theorem
[u]Theorem[/u]: Let [math]A[/math] be a square n x n matrix. Then the following statements are equivalent:[br][br][list=1][*][math]A[/math] is an invertible matrix.[/*][*][math]A[/math] is row equivalent to the n x n identity matrix.[/*][*][math]A[/math] has n pivot positions.[/*][*]The equation [math]Ax=0[/math] has only the trivial solution.[/*][*]The column vectors of [math]A[/math] form a linearly independent set.[/*][*]The linear transformation [math]T(x)=Ax[/math] is injective.[/*][*]The equation [math]Ax=b[/math] has at least one solution for each b in [math]\mathbb{R}^n[/math].[br][/*][*]The column vectors of [math]A[/math] span [math]\mathbb{R}^n[/math].[/*][*]The linear transformation [math]T(x)=Ax[/math] is surjective.[/*][*]There is an n x n matrix [math]C[/math] such that [math]CA=I[/math].[/*][*]There is an n x n matrix [math]D[/math] such that [math]AD=I[/math].[/*][*][math]A^T[/math] is an invertible matrix. [br][/*][/list][br]We divide the proof of the theorem into the following steps:
Prove that (1) [math]\Rightarrow[/math] (10) [math]\Rightarrow[/math] (4) [math]\Rightarrow[/math] (3) [math]\Rightarrow[/math] (2) [math]\Rightarrow[/math] (1). That is to say, (1), (2), (3), (4) and (10) are equivalent.
Prove that (1) [math]\Rightarrow[/math] (11) [math]\Rightarrow[/math] (7) [math]\Rightarrow[/math] (1). That is to say, (1), (7) and (11) are equivalent.
Prove that (7) [math]\Leftrightarrow[/math] (8) [math]\Leftrightarrow[/math] (9), (4) [math]\Leftrightarrow[/math] (5) [math]\Leftrightarrow[/math] (6), and (1) [math]\Leftrightarrow[/math] (12).
Close

Information: Characterizations of Invertible Matrices