IM 8.8.12 Lesson: Edge Lengths and Volumes
Let [math]a[/math],[math]b[/math], [math]c[/math], [math]d[/math], [math]e[/math], and [math]f[/math] be positive numbers.[br][br]Given these equations, arrange [math]a[/math],[math]b[/math], [math]c[/math], [math]d[/math], [math]e[/math], and [math]f[/math] from least to greatest. Explain your reasoning.[br][list][*][math]a^2=9[/math][/*][*][math]b^3=8[/math][/*][*][math]c^2=10[/math][/*][*][math]d^3=9[/math][/*][*][math]e^2=8[/math][/*][*][math]f^3=7[/math][/*][/list]
A cube has a volume of 8 cubic centimeters. A square has the same value for its area as the value for the surface area of the cube. How long is each side of the square?
For each card with a letter and value, find the two other cards that match. One shows the location on a number line where the value exists, and the other shows an equation that the value satisfies.
Explain your reasoning.[br][br]
IM 8.8.12 Practice: Edge Lengths and Volumes
What is the volume of a cube with a side length of 4 centimeters?
What is the volume of a cube with a side length of [math]\sqrt[3]{11}[/math] feet?
What is the volume of a cube with a side length of [math]s[/math] units?
What is the side length of a cube with a volume of 1,000 cubic centimeters?
What is the side length of a cube with a volume of [math]v[/math] cubic units?
Write an equivalent expression that doesn’t use a cube root symbol.
[math]\sqrt[3]{1}[/math][br]
[math]\sqrt[3]{216}[/math]
[math]\sqrt[3]{8000}[/math][br]
[math]\sqrt[3]{\frac{1}{64}}[/math]
[math]\sqrt[3]{\frac{27}{125}}[/math]
[math]\sqrt[3]{0.027}[/math]
[math]\sqrt[3]{0.000125}[/math]
Find the distance between each pair of points. If you get stuck, use the applet below.
[math]X=(5,0)[/math] and [math]Y=(-4,0)[/math]
[math]K=(-21,-29)[/math] and [math]L=(0,0)[/math]
Here is a 15-by-8 rectangle divided into triangles. Is the shaded triangle a right triangle? Explain or show your reasoning.
[img][/img]