The hyperbolic plane

This applet represents the Poincaré model of the hyperbolic plane, which corresponds to the white interior of the pictured circle.
You can explore many aspects of hyperbolic geometry, e.g.:[br][list][br][*] examine the sum of the interior angles of triangles observing, in particular, what happens when the sides of the triangle become very small;[br][*] given a point [math]P[/math] exterior to a line [math]r[/math], construct the perpendicular [math]p[/math] to [math]r[/math] passing through [math]P[/math], and then the perpendicular [math]\pi[/math] to [math]p[/math] passing through [math]P[/math] (this is the Euclidean construction of a parallel);[br][*] given a point [math]P[/math] exterior to a line [math]r[/math], construct as before the perpendiculars [math]p[/math] and [math]\pi[/math], select any point [math]Q[/math] on [math]r[/math], draw the perpendicular [math]s[/math] to [math]\pi[/math] passing through [math]Q[/math], and the circle [math]\gamma[/math] with center [math]P[/math] and radius [math]HQ[/math], where [math]H[/math] is the intersection of [math]r[/math] and [math]p[/math]. Name [math]B[/math] the point of intersection of [math]\gamma[/math] and [math]s[/math] which lies between [math]r[/math] and [math]\pi[/math], and draw the line [math]b[/math] passing through [math]P[/math] and [math]B[/math]. What can you say about [math]b[/math]?[br][/list][br][br]How many lines exist that are parallel to a given line [math]r[/math] and pass through an exterior point [math]P[/math]?[br]The latter is the János Bolyai construction of the [i]asymptotic parallel line[/i] (there are two such lines for any [math]r[/math] and [math]P\not\in r[/math].

Information: The hyperbolic plane