Power rules

Laws
[size=100]Let [math]x,y[/math] and [math]z[/math] be any three real numbers, and [math]n[/math] and [math]m[/math] be any two real numbers. Then the following statements hold true:[br][list][*][math]x^n \; x^m = x^{n + m}[/math].[/*][*][math]\left(x^n\right)^m=x^{nm}[/math].[/*][*][math]\left(x\; y\right)^n = x^n y^n[/math].[/*][*][math]x^0=1[/math]; provided that [math]x\ne0[/math].[/*][*][math]x^{-n}=\frac{1}{x^n}[/math]; provided that [math]x\ne0[/math].[/*][*][math]\frac{x^n}{x^m}=x^{n-m}[/math]; provided that [math]x\ne0[/math].[/*][*][math]\left(\frac{x}{y}\right)^n=\frac{x^n}{y^m}[/math]; provided that [math]y\ne0[/math].[/*][/list][/size]
Formative assessment
The purpose of the following applet is to practice simplifying algebraic expressions using the [b]Exponent Laws.[br][/b]Type in your answers in the boxes below (use ^ to write the power; for instance x^3 means [math]x^3[/math]).
References
Weisstein, Eric W. "Exponent Laws." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ExponentLaws.html

Information: Power rules