Multiple units and unit transformation

As mentioned, SI-system informs basic units. For example, the basic unit for mass in one kilogram. However, this unit is exaggerated then talking about the mass of a spider. Furthermore, the measurements of a box are usually given in centimetres but volume in litres. [br][br]Prefix of a unit express its magnitude compared to a basic unit. For example,[br][br]  [math]\Large 1\text{ km} = 1\cdot 10^3\text{ m}=1000 \text{ m}\\[br]\Large 1\text{ cm}=1\cdot 10^{-2}\text{ m}=0.01\text{ m}[/math][br][br] [br]If volume is solved with units of length but the context requires solution in litres, transformation can be done with [br][br]  [math]\LARGE \textcolor{blue}{1\text{ l}=1\text{ dm}^3.}[/math] [br][br]
Technical Formulas by Tammertekniikka
Technical Formulas by Tammertekniikka
Let us study situation, where one metre is transformed to centimetres. As known, the result is 100 cm. If we use the previous table, the idea is to[color=#0000ff] subtract power of end case from power of starting case[/color]. In our examples, the starting case is [math]\Large 1\text{ m} = 10^\textcolor{blue}{0} \text{ m}[/math] and the end case is [math] \Large 1 \text{ cm} = 10^{\textcolor{purple}{-2}} \text{ m}[/math]. Thus,[br][br]   [math] \Large 1\text{ m}=1\cdot 10^{\textcolor{blue}{0}-(\textcolor{purple}{-2})}\text{ cm}=1\cdot 10^2\text{ cm}=100\text{ cm}.[/math] [br][br]The same idea is usable also with harder cases. See the examples below.
Examples 1:
[u]Lengths:[/u][br][br][math]\Large 2.3\text{ cm}=2.3\cdot 10^{-2-0}\text{ m}=2.3\cdot 0.01 \text{ m}=0.023 \text{ m}\\[br]\Large 0.5\text{ km}=0.5\cdot 10^{3-(-1)}\text{ dm}=0.5\cdot 10^4 \text{ dm}=5000 \text{ dm}[/math][br][br][u]Area:[/u][br][br][math]\Large 1\text{ m}^2=1\cdot (10^{0-(-2)}\text{ cm})^2=1\cdot (10^2)^2\text{ cm}^2=10^4\text{ cm}^2=10000\text{ cm}^2\\[br]\Large 0.01\text{ ha}=0.01\cdot (10^{2-0}\text{ m})^2=0.01\cdot 10^4 \text{ m}^2=1\cdot 10^2 \text{ m}^2=100\text{ m}^2\\[br]\Large 4.7\text{ dm}^2=4.7\cdot (10^{-1-(-2)}\text{ cm})^2=4.7\cdot 10^2 \text{ cm}^2=470\text{ cm}^2[/math][br][br][u]Volume:[/u][br][br][math]\Large 1\text{ m}^3=1\cdot (10^{0-(-1)}\text{ dm})^3=1\cdot (10^1)^3\text{ dm}^3=10^3\text{ dm}^3=1000\text{ dm}^3=1000\text{ }\cal l\\[br]\Large 2\text{ }\cal l=2 \text{ dm}^3=2\cdot (10^{0-1}\text{ m})^3=2\cdot 10^{-3} \text{ m}^3=2\cdot 0.001\text{ m}^3=0.002\text{ m}^3\\[br]\Large 5.2\text{ dl}=5.2\cdot 10^{-1-(-3)}\text{ ml}=5.2\cdot 10^2 \text{ ml}=520\text{ ml}\\[br]\Large 3.1\text{ dl}=0.31 \text{ }\cal l=0.31 \text{ dm}^3=0.31\cdot 1000 \text{ cm}^3=310\text{ cm}^3[br][br][/math]
[color=#0000ff]Example 2[/color]. Wind speed is informed to be 18 m/s. What speed of a car does it correspond?[br][br]Speed of a car is usually given as km/h. Let us transform the given wind speed to this unit:[br][br]  [math]\Large 18 \text{ m/s} = 18 \frac{10^{-3}\text{ km} }{\frac{1}{60\cdot 60}\text{ h}}=18\cdot \frac{3600}{10^3} \text{ km/h}\approx 64.8 \text{km/h}.[/math][br][br][br][br][color=#0000ff]Example 3[/color]. It is noticed, that there is dropping water from a pipe with a speed of 60 litres in two hours. Calculation need units in SI system, so let us transform it to m[sup]3[/sup]/s.   [br][br]  [math]\Large \frac{60\text{ l}}{2\text{ h}}= \frac{60\text{ dm}^3}{2\cdot 60\cdot 60\text{ s}}=\frac{(10^{-1})^3\text{ m}^3}{2\cdot 60 \text{ s}}\approx 8.3\cdot 10^{-6}\text{ m}^3\text{/s}.[/math][br] [br][br]

Information: Multiple units and unit transformation