HKMO1516GCQ1
Suppose there are three different parallel lines, L1, L2 and L3. Construct an equilateral triangle with only one vertex lies on each of three parallel lines. 假設有三條不同的平行線, L1、L2 及 L3。 構作一個等邊三角形,其中每條平行線只會有一個頂點存在。 |
|
HKMO1415GCQ1
1. Construct an isosceles triangle which has the same base and height to the following triangle. 構作一個與下列三角形的底和高相等的等腰三角形。 |
|
HKMO1314GCQ1
Figure 1 shows a [math]\Delta[/math]ABC . Construct a circle with centre O inside the triangle such that the three sides of the triangle are tangents to the circle. 圖一所示為一個 [math]\Delta[/math]ABC 。試在該三角形內,構作一個圓心為 O 的圓,使三 角形三條邊均為該圓的切線。 |
|
HKMO1213GCQ1
Line segment PQ and an angle of size [math]\theta[/math] are given below. Construct the isosceles triangle PQR with PQ = PR and [math]\angle[/math]QPR = [math]\theta[/math]. 下圖所示為線段 PQ 及角 [math]\theta[/math]。試構作一個等腰三角形 PQR , 其中 PQ = PR 及 [math]\angle[/math]QPR = [math]\theta[/math]。 |
|