HKMO1516GCQ1

Suppose there are three different parallel lines, L1, L2 and L3. Construct an equilateral triangle with only one vertex lies on each of three parallel lines. 假設有三條不同的平行線, L1、L2 及 L3。 構作一個等邊三角形,其中每條平行線只會有一個頂點存在。

HKMO1415GCQ1

1. Construct an isosceles triangle which has the same base and height to the following triangle. 構作一個與下列三角形的底和高相等的等腰三角形。

HKMO1314GCQ1

Figure 1 shows a [math]\Delta[/math]ABC . Construct a circle with centre O inside the triangle such that the three sides of the triangle are tangents to the circle. 圖一所示為一個 [math]\Delta[/math]ABC 。試在該三角形內,構作一個圓心為 O 的圓,使三 角形三條邊均為該圓的切線。

HKMO1213GCQ1

Line segment PQ and an angle of size [math]\theta[/math] are given below. Construct the isosceles triangle PQR with PQ = PR and [math]\angle[/math]QPR = [math]\theta[/math]. 下圖所示為線段 PQ 及角 [math]\theta[/math]。試構作一個等腰三角形 PQR , 其中 PQ = PR 及 [math]\angle[/math]QPR = [math]\theta[/math]。

HKMO1112GCQ1

In the space provided, construct an equilateral triangle ABC with sides equal to the length of MN below. [br]在下面的空位上,試構作一等邊三角形 ABC ,當中每邊的長等於下圖中 MN 的長度。

HKMO1011GCQ1

Given a straight line L , and two points P and Q lying on the same side of L . Mark a point T on L so that the sum of the lengths of PT and QT is minimal. (Hint: Consider the reflection image of P about the line L ) [br] 已知一直線 L ,及兩點 P、Q 位於 L 的同一方。試在 L 上作一點 T 使得 PT 及 QT 的長度之和最小。(提示:可考慮 P 點於直線 L 上作反射的影像)

Information