Another Special Theorem: Part 1 (V3)

[color=#000000]Interact with the applet below for a few minutes. Then, answer the questions that follow. Be sure to change the locations of the [/color][color=#1e84cc][b]BLUE POINT[/b][/color][color=#000000] and WHITE POINT(S) each time before you re-slide the slider. Be sure to adjust the [/color][b][color=#ff00ff]pink slider[/color][/b][color=#000000] as well! [/color]
[color=#000000][b]Questions: [br][br][/b][/color][color=#000000]1) What can you conclude about the [/color][color=#980000][b]distances[/b][/color][color=#000000] from the [/color][color=#1e84cc][b]blue point[/b][/color][color=#000000] to each [b]side[/b] of the angle?[br] How do you know this? [br][br]2) What can you conclude about the location of the [/color][color=#1e84cc][b]blue point[/b][/color][color=#000000] with respect to the original (larger) angle? [br] Explain how you know this. [br][br]3) Use your observation to fill in the blanks to make a true statement: [br] If a [/color][color=#1e84cc][b]point[/b][/color][color=#000000] is[/color][color=#980000][b] _____________________ [/b][/color][color=#000000]from the [b]sides[/b] of an angle, then [/color][color=#1e84cc][b]that point[/b][/color][color=#000000] lies on the [br][/color][color=#1e84cc][b] _______________[/b][/color][color=#000000] of that angle. [br][br] 4) Write a 2-column or paragraph proof that proves the statement in (4) true. [br] [/color]

Information: Another Special Theorem: Part 1 (V3)