IM Geo.7.2 Lesson: Inscribed Angles

What do you notice? What do you wonder?
[img][/img]
Use the applet to answer the questions. Do not show the angle measures until you are told to.
Name the central angle in this figure.[br]
Name the [b]inscribed angle [/b]in this figure.[br]
Move point [math]B[/math] around the circle. As you move this point, what happens to the measure of angle [math]QBC[/math]? Show the angle measures to confirm.[br]
Move points [math]C,Q,[/math] and [math]B[/math] to new positions. Record the measure of angles [math]QAC[/math] and [math]QBC[/math]. Repeat this several times.[br]
Make a conjecture about the relationship between an inscribed angle and the central angle that defines the same arc.[br]
Here is a special case of an inscribed angle where one of the chords that defines the inscribed angle goes through the center.
The central angle [math]DCF[/math] measures [math]\theta[/math] degrees, and the inscribed angle [math]DEF[/math] measures [math]\alpha[/math] degrees. Prove that [math]\alpha=\frac{1}{2}\theta[/math].[br]
The image shows a circle with chords CD, CB, ED, and EB. The highlighted arc from point C to point E measures 100 degrees. The highlighted arc from point D to point B measures 140 degrees.
[size=150]Prove that triangles [math]CFD[/math] and [math]EFB[/math] are similar.[/size][br]
Close

Information: IM Geo.7.2 Lesson: Inscribed Angles