Can you apply the Factor Theorem to decide whether the polynomial [math]p\left(x\right)=x^3+x^2+6x[/math] is divisible by the binomial [math]q\left(x\right)=x^2+x[/math]?
No, because the divisor polynomial is not linear.[br]But in this case we can use a trick.[br][br]Write the division as a fraction [math]\frac{x^3+x^2+6x}{x^2+x}[/math], then factor out [math]x[/math] in the numerator and denominator, and simplify: [math]\frac{x^3+x^2+6x}{x^2+x}=\frac{x\left(x^2+x+6\right)}{x\left(x+1\right)}=\frac{x^2+x+6}{x+1}[/math].[br][br]For [math]x\ne0[/math], the given division is equivalent to the division of [math]\left(x^2+x+6\right)[/math] by [math]\left(x+1\right)[/math], that satisfies the conditions for the application of the Factor Theorem.