V.1. Die Parameter der Scheitelform erkunden

Die Normalparabel mit Scheitel S ( 0 | 0 ) und der Gleichung [math]y=x^2[/math] wurde in den vorherigen Kapiteln an der x-Achse gespiegelt, in y-Richtung gestreckt bzw. im Koordinatensystem verschoben.
[icon]https://www.geogebra.org/images/ggb/toolbar/mode_showhidelabel.png[/icon] [b][u]Arbeitsauftrag:[/u][/b][br]Erkunde nun zusammenfassend die Auswirkungen der Parameter [math]a[/math], [math]d[/math] und [math]e[/math] der Scheitelform der Parabelgleichung[br][math]y=a\cdot\left(x-d\right)^2+e[/math].[br]Gerne kannst du dafür auch die vorgegebenen Bilder verwenden oder ein eigenes Bild einer Parabel im Alltag einfügen (tippe auf das Koordinatensystem und füge es über [icon]/images/ggb/toolbar/mode_image.png[/icon] ein - mache es am besten über den BUTTON oben links transparent).[br][i][size=85]Falls du keine geeigneten Bilder finden oder fotographieren konntest, kannst du auch mit den beiden Beispielbildern arbeiten oder dir ein [url=https://www.geogebra.org/m/hzme85qv#material/ujmdamfv%20target=]Bild der Einstiegsseite[/url] speichern und auswählen.[/size][/i][br][br][size=85][i][b][u]ZUSATZ:[/u][/b][br]Findest du auch Sonderfälle bei den Werten der drei Parameter a, d bzw. e?[br][br][i][u][b]TIPP:[/b][/u][/i][br]Du kannst das Applet mit den beiden kreisförmig angeordneten Pfeilen wieder zurücksetzen.[/i][/size]
[quote][b][color=#674ea7][size=150][size=200][size=50][icon]https://www.geogebra.org/images/ggb/toolbar/mode_pen.png[/icon][/size][br][/size][size=200]Merke:[/size][/size][/color][color=#9900ff][br][/color][/b]Jede Parabel kann in der Form [math]y=a\cdot\left(x-d\right)^2+e[/math] mit [math]a\ne0[/math] angegeben werden.[br]An dieser Form kann man den [b]Scheitelpunkt [/b][b]S ( d | e )[/b] und den [b]Streckfaktor a[/b] direkt ablesen.[br][br]Deshalb wird diese Darstellungsform einer Parabelgleichung auch als [u][b]Scheitelpunktsform[/b][/u] oder kurz: [u][b]Scheitelform[/b][/u][b] [/b]bezeichnet.[br][/quote]
[size=150][icon]/images/ggb/toolbar/mode_createtable.png[/icon] [u][b]Übung 1:[/b][/u][/size][br][color=#333333]Lies Scheitel und Streckfaktor ab bzw. ergänze die Parabelgleichung sinnvoll.[/color][br][size=85]([b][u]TIPP:[/u][/b] Benutze [img]https://learningapps.org/style/fullscreenicon.png[/img] für den Vollbild-Modus)[/size]
[size=150][icon]/images/ggb/toolbar/mode_createtable.png[/icon] [u][b]Übung 2:[/b][/u][/size][br][color=#333333]Die Abbildung zeigt den blauen Graphen einer Parabel.[br]Gib die zugehörige Gleichung in Scheitelform ein und drücke anschließend den Button zum Überprüfen.[br]Wer von euch schafft die meisten richtigen Antworten hintereinander?[/color]
[size=150][icon]/images/ggb/toolbar/mode_createtable.png[/icon] [u][b]Übung 3:[/b][/u][/size][br][color=#333333]Bewege im Koordinatensystem den roten und den grünen Punkt, um die gegebene Parabel darzustellen.[br][/color]Schaffst den Highscore von 10 richtigen Parabeln in Folge![br]
[icon]https://www.geogebra.org/images/ggb/toolbar/mode_showhidelabel.png[/icon] [b][u]Arbeitsauftrag:[/u][/b][br]Die Normalparabel mit Scheitel S ( 0 | 0 ) und der Gleichung [math]y=x^2[/math] wurde in den vorherigen Kapiteln durch "[i][b]Transformationen[/b][/i]" verändert:[br][list][*]Verschiebung im Koordinatensystem[/*][*]Streckung in y-Richtung[/*][*]Spiegelung an der x-Achse[/*][/list]Dadurch verändern sich die Werte der Parameter [math]a[/math], [math]d[/math] und [math]e[/math] der Scheitelform der Parabelgleichung[br][math]y=a\cdot\left(x-d\right)^2+e[/math] .[br][br]Umgekehrt kann man anhand der Werte der Parameter [math]a[/math], [math]d[/math] und [math]e[/math] ablesen, wie eine Parabel aus der Normalparabel mit Scheitel S ( 0 | 0 ) und der Gleichung [math]y=x^2[/math] hervorgegangen ist.[br][br]Untersuche mithilfe des folgenden Applets die Reihenfolge der verschiedenen [i][b]Transformationen[/b][/i].[br]Sichere deine Ergebnisse nach jedem Durchlauf unter dem Applet.[br][br]
[icon]/images/ggb/toolbar/mode_buttonaction.png[/icon] [b][u]Ergebnissicherung:[/u][/b][br]Sobald du eine sinnvolle Reihenfolge der Transformationen gefunden hast, kannst sie ankreuzen, damit du den Überblick behältst.[br][size=85][i](es sind nicht alle 24 Kombinationsmöglichkeiten aufgeführt - du kannst das Notizenfeld ganz unten benutzen, um weitere sinnvolle Reihenfolgen zu notieren)[/i][/size]
[quote][img]https://wiki.geogebra.org/uploads/thumb/2/22/Baseline-create-24px.svg/24px-Baseline-create-24px.svg.png[/img] [b][u][size=150][color=#6557d2]NOTIZEN[/color][/size][/u][/b][br]Hier findest du Platz für deine Notizen oder Nebenrechnungen. Du kannst das Whiteboard zudem als Schmierzettel für Ideen oder in der Classroom-Variante dieser Seite auch als persönliche Rückmelde-/Fragemöglichkeit an deinen Lehrer verwenden.[br]Wähle im ersten Schritt immer ein [i]Werkzeug [/i]in einer der drei Ansichten [img]https://wiki.geogebra.org/uploads/1/19/Notes-pen_view24px.png[/img] [i]Stift-Ansicht[/i], [img]https://wiki.geogebra.org/uploads/b/b0/Notes-tools_view24px.png[/img] [i] Formen-Ansicht [/i]und [img]https://wiki.geogebra.org/uploads/7/78/Notes-media_view24px.png[/img] [i]Medien-Ansicht[/i]. [br]Du kannst die [i]Werkzeugleiste [/i]ausblenden, indem du[img]https://wiki.geogebra.org/uploads/thumb/2/29/Baseline-keyboard_arrow_down-24px.svg/24px-Baseline-keyboard_arrow_down-24px.svg.png[/img] in der oberen rechten Ecke der [i]Werkzeugleiste [/i]auswählst.[br]Wenn du oben links das Menü [img]https://wiki.geogebra.org/uploads/thumb/c/c8/Baseline-menu-24px.svg/24px-Baseline-menu-24px.svg.png[/img] auswählst, kannst du deine Notizen, z.B. als Bild exportieren oder ausdrucken.[/quote]
Close

Information: V.1. Die Parameter der Scheitelform erkunden