IM Alg1.7.12 Lesson: Completing the Square (Part 1)
[size=150]Select [b]all [/b]expressions that are perfect squares. Explain how you know.[/size][br][br][math](x+5)(5+x)[/math]
[math](x+5)(x-5)[/math]
[math](x-3)^2[/math]
[math]x-3^2[/math]
[math]x^2+8x+16[/math]
[math]x^2+10x+20[/math]
Complete the table so that each row has equivalent expressions that are perfect squares.
[size=150]One technique for solving quadratic equations is called [b]completing the square[/b][i].[/i] Here are two examples of how Diego and Mai completed the square to solve the same equation. [br][br][table][tr][td]Diego:[/td][td]Mai:[/td][/tr][tr][td][math]\displaystyle \begin {align} x^2+10x+9 &=0 \\x^2+10x &= \text-9 \\ x^2+10x+25 &=\text-9 + 25\\x^2+10x+25 &=16 \\ (x+5)^2 &=16\\ x+5=4 \quad & \text{or} \quad x+5=\text-4\\ x=\text-1 \quad & \text{or} \quad x=\text-9 \end{align}[/math][/td][td][math]\begin {align} x^2 + 10x + 9 &= 0\\ x^2 + 10x + 9 + 16 &= 16\\ x^2+10x+25 &=16\\ (x+5)^2&=16\\ x+5=4 \quad & \text{or} \quad x+5=\text-4\\ x=\text-1 \quad & \text{or} \quad x=\text-9 \end {align}[/math][br][/td][/tr][/table][br][/size][size=150][br]Study the worked examples. Then, try solving these equations by completing the square:[br][/size][br][math]x^2+6x+8=0[/math]
[math]x^2+12x=13[/math]
[math]0=x^2-10x+21[/math]
[math]x^2-2x+3=83[/math]
[math]x^2+40=14x[/math]
Here is a diagram made of a square and two congruent rectangles.
[size=150]Its total area is [math]x^2+35x[/math] square units.[br][br][/size]What is the length of the unlabeled side of each of the two rectangles?[br]
If we add lines to make the figure a square, what is the area of the entire figure?[br]
How is the process of finding the area of the entire figure like the process of building perfect squares for expressions like [math]x^2+bx[/math]?
IM Alg1.7.12 Practice: Completing the Square (Part 1)
Add the number that would make the expression a perfect square. Next, write an equivalent expression in factored form.
[math]x^2-6x[/math]
[math]x^2+2x[/math]
[math]x^2+14x[/math]
[math]x^2-4x[/math]
[math]x^2+24x[/math]
[size=150]Mai is solving the equation [math]x^2+12x=13[/math]. She writes:[br][size=100][math]\displaystyle \begin{align} x^2 + 12x &= 13\\ (x + 6)^2 &= 49\\ x &= 1 \text { or } x = \text- 13\\ \end{align}\\[/math][/size][br][br]Jada looks at Mai’s work and is confused. She doesn’t see how Mai got her answer.[/size][br][br]Complete Mai’s missing steps to help Jada see how Mai solved the equation.[br]
Solve each equation by completing the square.
[math]x^2-6x+5=12[/math]
[math]11=x^2+4x-1[/math]
[math]x^2-2x=8[/math]
[math]x^2-18x+60=\text{-}21[/math]
Rewrite each expression in standard form.
[math](x+3)(x-3)[/math]
[math](7+x)(x-7)[/math]
[math](2x-5)(2x+5)[/math]
[math]\left(x+\frac{1}{8}\right)\left(x-\frac{1}{8}\right)[/math]
[size=150]To find the product [math]203\cdot197[/math] without a calculator, Priya wrote [math](200+3)(200-3)[/math]. Very quickly, and without writing anything else, she arrived at 39,991. [/size][size=150]Explain how writing the two factors as a sum and a difference may have helped Priya.[/size]
[size=150]A basketball is dropped from the roof of a building and its height in feet is modeled by the function [math]h[/math].[br][br]Here is a graph representing [math]h[/math].[/size][br][img][/img][br]Select [b]all [/b]the true statements about this situation.
[size=150]A group of students are guessing the number of paper clips in a small box.[br][br]The guesses and the guessing errors are plotted on a coordinate plane.[br][img][/img][br]What is the actual number of paper clips in the box?[/size]