[size=150]A quadratic function [math]f[/math] is defined by [math]f\left(x\right)=\left(x-7\right)\left(x+3\right)[/math].[/size][br][br]Without graphing, identify the [math]x[/math]-intercepts of the graph of [math]f[/math]. Explain how you know.[br]
Expand [math]\left(x-7\right)\left(x+3\right)[/math] and use the expanded form to identify the [math]y[/math]-intercept of the graph of [math]f[/math].[br]
What are the [math]x[/math]-intercepts of the graph of the function defined by [math]\left(x-2\right)\left(2x+1\right)[/math]?
[img][/img][br][br]Which expression could define this function?
[size=150]What is the [math]y[/math]-intercept of the graph of the equation [math]y=x^2-5x+4[/math]?[/size][br]
An equivalent way to write this equation is [math]y=\left(x-4\right)\left(x-1\right)[/math]. What are the [math]x[/math]-intercepts of this equation’s graph?[br]
[size=150]Noah said that if we graph [math]y=\left(x-1\right)\left(x+6\right)[/math], the [math]x[/math]-intercepts will be at [math]\left(1,0\right)[/math] and [math]\left(-6,0\right)[/math].[br][br][/size]Explain how you can determine, without graphing, whether Noah is correct.
[size=150]A company sells a video game. If the price of the game in dollars is [math]p[/math] the company estimates that it will sell [math]20,000-500p[/math] games.[br][/size][br]Which expression represents the revenue in dollars from selling games if the game is priced at [math]p[/math] dollars?
An applet is provided below for you to draw a diagram if needed. [br][br][math]\left(x-3\right)\left(x-6\right)[/math]
[math]\left(x-4\right)^2[/math]
[math]\left(2x+3\right)\left(x-4\right)[/math]
[math]\left(4x-1\right)\left(3x-7\right)[/math]
[size=150]Consider the expression [math]\left(5+x\right)\left(6-x\right)[/math].[/size][br][br]Is the expression equivalent to [math]x^2+x+30[/math]? Explain how you know.[br]
Is the expression [math]30+x-x^2[/math] in standard form? Explain how you know.[br]
[size=150]Here are graphs of the functions [math]f[/math] and [math]g[/math] given by [math]f\left(x\right)=100\cdot\left(\frac{3}{5}\right)^x[/math] and [math]g\left(x\right)=100\cdot\left(\frac{2}{5}\right)^x[/math].[br][br][img][/img][br][/size][br]Which graph corresponds to [math]f[/math] and which graph corresponds to [math]g[/math]? Explain how you know.
[size=150]Here are graphs of two functions [math]f[/math] and [math]g[/math].[/size][br][img][/img][br]An equation defining [math]f[/math] is [math]f\left(x\right)=100\cdot2^x[/math].[br][br]Which of these could be an equation defining the function [math]g[/math]?