Circumcenter Discovery
[color=#000000]Interact with this applet for a few minutes, then answer the questions that follow. [br][br]Be sure to change the locations of the triangle's [/color][b]VERTICES[/b] both [b]BEFORE[/b] and [b]AFTER[/b] sliding the slider![br]In addition, note the [b][color=#ff00ff]pink slider[/color][/b] controls the measure of the interior angle with [b]pink vertex (lower left)[/b].
1.
What can you conclude about the [b][color=#1e84cc]3 smaller blue points[/color][/b]? What are they? How do you know this?
2.
[color=#000000]What vocabulary term best describes each [/color][color=#980000][b]brown line[/b][/color][color=#000000]? Why is this? [/color]
3.
[color=#000000]Describe [/color][b][color=#ff7700]the intersection[/color][/b][color=#000000] of these [/color][color=#980000][b]3 brown lines[/b][/color][color=#000000]. [/color][b][color=#ff7700]How do they intersect?[/color][/b]
[color=#ff7700][b]The ORANGE POINT[/b][/color]is called the [b][color=#ff7700]CIRCUMCENTER[/color][/b][color=#000000] of the triangle. [br][/color]Also, note that the [b][color=#ff00ff]pink slider[/color][/b] controls the [b][color=#ff00ff]measure of the interior angle with pink vertex[/color][/b] (lower left).
6.
[color=#000000]Is it ever possible for the [/color][b][color=#ff7700]circumcenter [/color][/b][color=#000000]to lie [i]outside the triangle[/i]?[br]If so, how would you classify such a triangle by its angles? (obtuse, acute, or right) [/color]
7.
[color=#000000]Is it ever possible for the [/color][color=#ff7700][b]circumcenter[/b] [/color][color=#000000]to lie [i]on the triangle itself[/i]?[br]If so, how would you classify such a triangle by its angles? (obtuse, acute, or right) [br]And if so, [i]where exactly on the triangle[/i] is the [/color][b][color=#ff7700]circumcenter[/color][/b][color=#000000] found? [/color]
8.
[color=#000000]Is it ever possible for the [/color][b][color=#ff7700]circumcenter[/color][/b][color=#000000] to lie [i]inside the triangle[/i]?[br]If so, how would you classify such a triangle by its angles? (obtuse, acute, or right) [/color]
9.
[color=#000000]What is so special about the [/color][b][color=#9900ff]purple circle [/color][/b][color=#000000]with respect to the triangle's vertices[/color][color=#000000]? [/color]
10.
[color=#000000]What [/color][color=#ff00ff][b]previously learned theorem[/b][/color][color=#000000] easily implies that the distance from the [/color][b][color=#ff7700]circumcenter[/color][/b][color=#000000] to any [/color]vertex[color=#000000]is equal to the distance from the [/color][b][color=#ff7700]circumcenter[/color][/b][color=#000000] to any other [/color]vertex[color=#000000]? [/color]
Circumcenter Construction
Review of constructing a Perpendicular Bisector
Construction Steps:
[table][tr][td][size=100]1.[/size][/td][td][size=100][img][/img][/size][/td][td][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100]Construct a circle centered at point A [i]and through point B[/i]. (circle d)[/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/td][td][br][/td][td][size=100]8.[/size][/td][td][size=100][icon]https://www.geogebra.org/images/ggb/toolbar/mode_join.png[/icon][/size][/td][td][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100]Construct[/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][i] line GF[/i]. (line i)[/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/td][/tr][tr][td][size=100]2.[/size][/td][td][img][/img][br][/td][td][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100]Construct a circle centered at point B [i]and through point A[/i]. (circle e)[/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][size=100][size=100][size=100][size=100][size=100][size=100][size=100][/size][/size][/size][/size][/size][/size][/size][br][/size][/td][td][br][/td][td][size=100]9.[/size][/td][td][size=100][img][/img][/size][/td][td][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100]Construct a circle centered at point B [i]and through point C[/i]. (circle k)[/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/td][/tr][tr][td][size=100][size=100][size=100]3.[/size][/size][/size][/td][td][size=100][size=100][icon]https://www.geogebra.org/images/ggb/toolbar/mode_intersect.png[/icon][/size][/size][/td][td][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100]Construct the intersection points between circle d and circle e. [br](point D & point E)[/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/td][td][br][/td][td][size=100]10.[/size][/td][td][size=100][img][/img][/size][/td][td][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100]Construct a circle centered at point C [i]and through point B[/i]. (circle p)[/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/td][/tr][tr][td][size=100]4.[/size][/td][td][size=100][size=100][size=100][size=100][size=100][icon]https://www.geogebra.org/images/ggb/toolbar/mode_join.png[/icon][/size][/size][/size][/size][/size][/td][td][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100]Construct[/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][i] line DE[/i]. (line f)[/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][br][/size][/td][td][size=100][br][/size][/td][td]11.[br][/td][td][size=100][size=100][size=100][size=100][icon]https://www.geogebra.org/images/ggb/toolbar/mode_intersect.png[/icon][/size][/size][/size][/size][/td][td][size=100][/size][size=100][size=100][size=100][size=100][size=100][size=100][/size][/size][/size][/size][/size][/size][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100]Construct the intersection points between circle k and circle p. [br](point I & point H)[/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][br][/td][/tr][tr][td][size=100]5.[/size][/td][td][size=100][img][/img][/size][/td][td][size=100][size=100][size=100][size=100][size=100][/size][/size][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100]Construct a circle centered at point A [i]and through point C[/i]. (circle g)[/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/td][td][br][/td][td][size=100]12[/size][/td][td][size=100][icon]https://www.geogebra.org/images/ggb/toolbar/mode_join.png[/icon][/size][/td][td][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100]Construct[/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][i] line IH[/i]. (line J)[/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/td][/tr][/table][br][table][tr][td][size=100]6.[/size][/td][td][size=100][img][/img][/size][/td][td][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100]Construct a circle centered at point C [i]and through point A[/i]. (circle h)[/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][br][/size][/td][td][size=100][br][/size][/td][td]13.[br][/td][td][size=100][size=100][size=100][size=100][icon]https://www.geogebra.org/images/ggb/toolbar/mode_intersect.png[/icon][/size][/size][/size][/size][/td][td][size=100][/size][size=100][size=100][size=100][size=100][size=100][size=100][/size][/size][/size][/size][/size][/size][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100]Construct[/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][i] the intersection of line f and line i. (point J) [/i][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size] [br][/td][/tr][tr][td][size=100]7.[/size][/td][td][size=100][icon]https://www.geogebra.org/images/ggb/toolbar/mode_intersect.png[/icon][/size][/td][td][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100][size=100]Construct the intersection points between circle g and circle h. [br](point G & point F)[/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/size][/td][td][br][/td][td][size=100][/size][/td][td][size=100][/size][/td][td][size=100][size=100][/size][/size][/td][/tr][/table]
Task:
Construct the circumcenter of triangle ABC by following the construction steps provided above the blank worksheet.
Question:
Are line DE, line GF, and line IH always concurrent? (Move points A, B, and C to change the triangle and check your answer.)
Explore the construction of the circumcenter and its relationship with the triangle.
Here is the finished construction
Points of Concurrency Summary
Circumcenter
What 3 special constructions meet at the [b]circumcenter[/b]?
Location of a Circumcenter
For which type of triangle is the circumcenter outside of the triangle?
Incenter
What 3 special constructions meet at the [b]incenter[/b]?
True or False. [br]The incenter is equally distance from each [b]side [/b]of the triangle.
Application Question
You are trying to set up your popcorn stand at the fair [b]equally distant [/b](equidistant) from all 3 entrances. What point would you need to construct so that your stand is the same distance from all three entrances? [img][/img]
What is being constructed? How do you know? [br][img][/img]
What is being constructed? How do you know?[br][img][/img]