IM Alg2.1.8 Practice: The nᵗʰ Term

[size=150]A sequence is defined by [math]f\left(0\right)=-20[/math], [math]f\left(n\right)=f\left(n-1\right)-5[/math] for [math]n\ge1[/math].[/size][br][br]Explain why [math]f\left(1\right)=-20-5[/math].
Explain why [math]f\left(3\right)=-20-5-5-5[/math].
Complete the expression: [math]f\left(10\right)=-20-[/math]_____. Explain your reasoning.
[size=150]A sequence is defined by [math]f\left(0\right)=-4,f\left(n\right)-f\left(n-1\right)-2[/math] for [math]n\ge1[/math]. Write a definition for the [math]n^{th}[/math] term of the sequence.[/size]
Here is the recursive definition of a sequence:
[math]f\left(1\right)=3[/math], [math]f\left(n\right)=2\cdot f\left(n-1\right)[/math] for [math]n\ge2[/math].[br][br]Find the first 5 terms of the sequence.[br]
Graph the value of the term as a function of the term number.
Is the sequence arithmetic, geometric, or neither? Explain how you know.[br]
Here is a graph of sequence M.
[img][/img][br][br]Define [math]M[/math] recursively using function notation.
Write the first five terms of each sequence. Determine whether each sequence is arithmetic, geometric, or neither.
[math]a\left(1\right)=5[/math], [math]a\left(n\right)=a\left(n-1\right)+3[/math] for [math]n\ge2[/math].
[math]b\left(1\right)=1[/math], [math]b\left(n\right)=3\cdot b\left(n-1\right)[/math] for [math]n\ge2[/math].
[math]c\left(1\right)=3[/math], [math]c\left(n\right)=-c\left(n-1\right)+1[/math] for [math]n\ge2[/math].[br]
[math]d\left(1\right)=5[/math], [math]d\left(n\right)=d\left(n-1\right)+n[/math] for [math]n\ge2[/math].
Here is the graph of a sequence:
[img][/img][br][br]Is this sequence arithmetic or geometric? Explain how you know.
List at least the first five terms of the sequence.[br]
Write a recursive definition of the sequence.[br]
Close

Information: IM Alg2.1.8 Practice: The nᵗʰ Term