IM Geo.3.11 Lesson: Splitting Triangle Sides with Dilation, Part 2

What do you notice? What do you wonder?
[img][/img]
Does a line parallel to one side of a triangle always create similar triangles?
Create several examples. Decide if the conjecture is true or false. If it’s false, make a more specific true conjecture.[br]
Find any additional information you can be sure is true.[br]Label it on the diagram below.
Write an argument that would convince a skeptic that your conjecture is true.[br]
Find the length of each unlabelled side.
Segments [math]AB[/math] and [math]EF[/math] are parallel.
Find the length of each unlabelled side.
Segments [math]BD[/math] and [math]FG[/math] are parallel. Segment [math]EG[/math] is 12 units long. Segment [math]EB[/math] is 2.5 units long.
Find the lengths of sides [math]CE[/math], [math]CB[/math], and [math]CA[/math] in terms of [math]x[/math], [math]y[/math], and [math]z[/math] in the applet below. Explain or show your reasoning.
Cerrar

Información: IM Geo.3.11 Lesson: Splitting Triangle Sides with Dilation, Part 2