[math]y=2\sin\left(\theta\right)[/math]
[math]y=\cos\left(\theta\right)-5[/math]
[math]y=1.4\sin\left(\theta\right)+3.5[/math]
Use the graph to find the amplitude of this sine equation.[br]
[size=150]Select [b]all [/b]trigonometric functions with an amplitude of 3.[/size]
Fill out the table showing the vertical position of [math]P[/math] after the windmill has rotated through the given angle.[br][br]Write an equation for the function [math]f[/math] that describes the relationship between the angle of rotation [math]\theta[/math] and the vertical position of the point [math]P[/math], [math]f\left(\theta\right)[/math], in feet.
[size=150]The measure of angle [math]\theta[/math], in radians, satisfies [math]\sin\left(\theta\right)<0[/math][/size][size=150]. If [math]\theta[/math] is between 0 and [math]2\pi[/math] what can you say about the measure of [math]\theta[/math]?[/size]
[size=150]Which rotations, with center [math]O[/math], take [math]P[/math] to [math]Q[/math]? Select [b]all[/b] that apply.[br][img][/img][/size]
[size=150]The picture shows two points [math]P[/math] and [math]Q[/math] on the unit circle.[/size][br][img][/img][br]Explain why the tangent of [math]P[/math] and [math]Q[/math] is 2.