优秀绘本汇总
[list=1][*][url=https://www.geogebra.org/m/phm2y6gb]初中数学教材配套资源【人教】 [/url][/*][*][url=https://www.geogebra.org/m/phm2y6gb] [/url][url=https://www.geogebra.org/m/ht2r3d2x]人教版初中数学ggb资源 – GeoGebra[/url] [/*][*]初中数学乐乐课堂微课(B站资源) [url=https://www.geogebra.org/m/jcz8xse9] https://www.geogebra.org/m/jcz8xse9[/url][br][/*][*]洋葱初中数学 [url=https://www.geogebra.org/m/cb58atab]https://www.geogebra.org/m/cb58atab[/url][br][/*][*]鹿梅 初中数学几何课件(模型) https://www.geogebra.org/m/s95nxxgn[br][/*][*]初中数学知识体系 [url=https://www.geogebra.org/m/qt8xhf5p]https://www.geogebra.org/m/qt8xhf5p[/url][br][/*][*][url=https://www.geogebra.org/m/urufsydt]GeoGebra数学资源(4-8年级)[/url] [/*][*]GeoGebra数学资源(4-8年级),孟宝兴,https://www.geogebra.org/m/urufsydt [br][/*][*]Exercicis PAU Dibuix Tècnic amb GeoGebra(GGB绘图),https://www.geogebra.org/m/fcugqsth[br][/*][*][url=https://www.geogebra.org/m/gamsu8n5]GeoGebra Gr 4-8 Math Resources[/url],https://www.geogebra.org/m/gamsu8n5[/*][*]几何图形绘本,https://www.geogebra.org/m/g24yH5Gh[/*][*][url=https://www.geogebra.org/m/zzmwcrm4]期末作业[/url][br][/*][*][url=https://www.geogebra.org/m/B46V4A4D]M.MOINET : G - Géométrie[/url][/*][*][url=https://www.geogebra.org/m/kr4gxwmr]平行四边形大单元教学设计[/url][/*][*][url=https://www.geogebra.org/m/RkrN8HG2]Triangle[/url] (绘图)[br][/*][*][url=https://www.geogebra.org/m/ugs2hfuh]尺规作图_课本内容[/url][br][/*][*][url=https://www.geogebra.org/m/p9dfntqe]Congruence (Vol 2)[/url][br][/*][*][url=https://www.geogebra.org/m/n2fbpyhp]5、平面与几何体相交时,截面时什么图形? – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/r87agtmn]4、平面与正方体相交时,截口图形有什么图形? – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/nmdwy89k]2、耐克(对勾)函数的图像和性质 – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/dy2qhhvx]平面直角坐标系相关探究活动 – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/wwxhznyd]探索两条直线的位置关系 – GeoGebra[/url][br][/*][*][url=https://ggb.iclass30.com/more]让教学成为美好体验-C30是一种教学方式 (iclass30.com)[/url][br][/*][*] [/*][*] [/*][/list][br]期末作业[br][url=https://www.geogebra.org/m/rmgjuk2k]人教版九年级数学上册 – GeoGebra[/url][br][br][url=https://www.geogebra.org/m/ubwmxtez]上海中考数学模拟试卷 – GeoGebra[/url]
[list=1][*][url=https://www.geogebra.org/m/dyetmjzr]高中数学教材配套资源【人教】[/url][/*][*]高中数学/职校数学 https://www.geogebra.org/m/GmFKmtMZ[/*][*][url=https://www.geogebra.org/m/dyetmjzr]Statistics: Collected Resources[/url],https://www.geogebra.org/m/v8au3nx4 [/*][*][url=https://www.geogebra.org/material/show/id/ua7tksvx]圆锥曲线[/url] [/*][*]高中数学(必修1)动态图形小素材 - 教学用,https://www.geogebra.org/m/nka2tkp6[br][/*][*]高中数学(必修2)动态图形小素材 - 教学用,https://www.geogebra.org/m/yax4rkhb [/*][*][url=https://www.geogebra.org/m/gykz5w6r]高中数学(选必1)动态图形小素材 - 教学用[/url] [/*][*][url=https://www.geogebra.org/m/w9dvr2zz]高中数学实验室(2021年版)——配合2019版普通高中教科书使用[/url][br][/*][*] [/*][*][url=https://www.geogebra.org/m/xxpzuum3]高中数学动态图形小素材 - 教学用[/url][br][/*][*][url=https://www.geogebra.org/m/qqftbf52]图说数学 – GeoGebra[/url] [/*][*] [/*][*][url=https://www.geogebra.org/m/dyetmjzr][br][/url] [/*][/list][br]November Test ICT,https://www.geogebra.org/m/twfeejfs[br]Set Book,https://www.geogebra.org/m/mdfzremr
[list=1][*]微积分 [url=https://www.geogebra.org/m/yn6xudfs]Pearson Interactive Calculus Figures[/url][br][/*][*][url=https://www.geogebra.org/m/ensngr9a]MATH2001 - Calculus & Linear algebra I[/url] [br]This book contains learning resources (activities and visualizations) for the course Calculus & Linear algebra II from the UQ workbook. [br]Online slides: [url=https://www.dynamicmath.xyz/math2001/]https://www.dynamicmath.xyz/math2001/[/url] [/*][*][url=https://www.geogebra.org/m/ensngr9a]MATH2001 - Calculus & Linear algebra II[/url] [br]https://www.dynamicmath.xyz/math2001/#/[br][/*][*][url=https://www.geogebra.org/m/kZsVwDpN]Тоон дарааллын хязгаар[/url][br][/*][*][url=https://www.dynamicmath.xyz/]Dynamic Mathematics[/url][br][/*][*][url=https://www.dynamicmath.xyz/math2001/sketches/stokes/]MathBox - Stokes' Theorem Visualization (dynamicmath.xyz)[/url][br][/*][*] [url=https://www.geogebra.org/m/daz9grnr]Matrices Resource Book[/url][br][/*][*][url=https://www.geogebra.org/m/gyt86dqv]E Math O Level Topical[/url][/*][*] [/*][/list][br]Тоон дарааллын хязгаар[br]Тоон дарааллын хязгаар
[list=1][*]https://www.frassek.org/3d-mathe/ 【德文】[/*][*]Interactive Linear Algebra by Dan Margalit, Joseph Rabinoff,(英语)https://textbooks.math.gatech.edu/ila/[/*][*][url=https://www.geogebra.org/m/ensngr9a]MATH2001 - Calculus & Linear algebra I[/url] [br]This book contains learning resources (activities and visualizations) for the course Calculus & Linear algebra II from the UQ workbook. [br]Online slides: [url=https://www.dynamicmath.xyz/math2001/]https://www.dynamicmath.xyz/math2001/[/url] [/*][*]《线性代数的艺术》,https://github.com/kenjihiranabe/The-Art-of-Linear-Algebra[/*][*]矩阵的力量,https://github.com/Visualize-ML/Book4_Power-of-Matrix[/*][*]MalinC's GeoGebra-book(英语),https://www.geogebra.org/m/ebpKQ5C7[br]http://www.malinc.se/math/ [br]http://www.malinc.se/[br][/*][*] [/*][/list]
[list=1][*][url=https://www.geogebra.org/m/qb3jfzmy#material/kh27d5e8]小學數學 [/url][url=https://www.geogebra.org/m/IkHJXodn]https://www.geogebra.org/m/IkHJXodn[/url][br][/*][*]玖数小学数学(思维拓展)作者:玖数,https://www.geogebra.org/m/mmuazmva[/*][/list][br][br][br][br][br]小学数学GGB网址(意大利文):http://splashscuola.altervista.org/esercizi/geogebra/geogebra_elementare.shtml
[list=1][*][url=https://www.geogebra.org/m/wxhdxf5e]GeoGebra游戏案例集[/url] [/*][*] [url=https://www.geogebra.org/m/JexnDJpt]Lights Out (Games with solutions)[/url][/*][*]作图游戏绘本 [url=https://ggb123.cn/m/S8cNKSyt]Geometry Introduction[br][/url][/*][*][url=https://ggb123.cn/m/S8cNKSyt][/url][url=https://ggb123.cn/m/k9AQ8e7h]Tutorial [/url][/*][*][url=https://ggb123.cn/m/S8cNKSyt][/url][url=https://ggb123.cn/m/k9AQ8e7h][br][/url][br][/*][/list][br]Geometry Introduction
[list=1][*]Python en Geogebra [url=https://www.geogebra.org/m/mvcy7r23]https://www.geogebra.org/m/mvcy7r23[/url] , https://geogebra.github.io/pyggb/[/*][*]官长寿的GeoGebra學習教室 [br]http://120.101.70.8/longlife/GGB_Classroom/ [br]https://www.geogebra.org/m/CV9fIj2B[br]http://120.101.70.8/longlife/GGB_Classroom/Introduction/GeoGebra_Classroom.pdf[br][/*][*][url=https://www.geogebra.org/m/cxqnngwx]学习 GeoGebra 经典应用 – GeoGebra[/url][br][/*][*]pyggb,https://www.geogebra.org/m/mssudmmm[br][/*][*][url=https://www.geogebra.org/m/cdtqzhxu]【教程】计算器套件[/url] [url=https://www.geogebra.org/u/chinachina]GeoGebra爱好者 – 资源 – GeoGebra[/url][/*][*][url=https://www.geogebra.org/m/mn6gygsa]学习几何[/url][/*][*][url=https://www.geogebra.org/m/qfwhx2xc]探究1 通过指令框输入 – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/pc9ve2bm]探究2 通过上部工具栏绘制图形 – GeoGebra[/url][br][/*][*][br][/*][*] [/*][/list]
[list=1][*][url=https://www.geogebra.org/m/pybwzref]必修二[/url](高中物理)by:[url=https://www.geogebra.org/u/%E8%B4%BE%E5%9D%A4]贾坤(模型库)[/url] https://www.geogebra.org/m/pybwzref[br][/*][*][url=https://www.geogebra.org/m/pybwzref]必修二 – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/y5zaywhy]带电粒子的典型轨迹(磁场)by:[/url][url=https://www.geogebra.org/u/%E8%B4%BE%E5%9D%A4]贾坤(模型库)[/url] [url=https://www.geogebra.org/m/y5zaywhy]https://www.geogebra.org/m/y5zaywhy[/url][/*][*]Physics by Abdul Latiff,[url=https://ggb123.cn/m/bwxytk2m]https://ggb123.cn/m/bwxytk2m[/url] by [url=https://ggb123.cn/u/anattazen]Abdul Latiff[/url][/*][*]GCE 'O' Level Physics by Tan Seng Kwang,[url=https://ggb123.cn/m/z5nfs8qd]https://ggb123.cn/m/z5nfs8qd[/url] by [url=https://ggb123.cn/u/sengkwang]Tan Seng Kwang[/url][br][/*][*]GCE 'A' Level Physics by Tan Seng Kwang,[url=https://ggb123.cn/m/dgedzmz3]https://ggb123.cn/m/dgedzmz3[/url] by [url=https://ggb123.cn/u/sengkwang]Tan Seng Kwang[/url][br][/*][*][url=https://ggb123.cn/m/MDfzb5ns]Dynamic Coulors[/url],Autor:[url=https://ggb123.cn/u/roman]Roman Chijner[/url][/*][*][url=https://ggb123.cn/m/Z57h2sQc]FISICA[/url],Autor:[url=https://ggb123.cn/u/lucianotroilo]Luciano Troilo[/url][/*][*][url=https://ggb123.cn/m/gNUMBIXe]Sciences Physiques[/url],Autor:[url=https://ggb123.cn/u/philippe+ligarius]Philippe Ligarius (LPH)[/url][/*][*]Plotters of the electric field of point charges,https://www.geogebra.org/m/eRzU2rYr[br][/*][*] Física Batxillerat,https://www.geogebra.org/m/vkzvbe5u[/*][*][url=https://www.geogebra.org/m/nfjy7ug4]El dominio del Tiempo (cinemática intuitiva) – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/Xys8au43]Творческая студия "03. Физика" – GeoGebra[/url] [/*][*][url=https://www.geogebra.org/m/bfnhhhee]Электрические схемы – GeoGebra[/url] (电学) [/*][*] [/*][*] [/*][*][url=https://www.geogebra.org/m/paj7rz4j]高中物理模型 – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/pd6dv5eh]共点力的动态平衡问题 – GeoGebra[/url][br][/*][*][url=https://www.zxxk.com/docpack/2832409.html]【手影物理】GeoGebra物理课件制作学习与应用高级教程-学科网 (zxxk.com)[/url][br][/*][*][url=https://www.geogebra.org/m/qfk3kqju]《大学物理》交互动画(College Physics) – GeoGebra[/url] (大学物理)[br][/*][*][url=https://www.geogebra.org/m/ze59wnpp]《电磁学》交互动画(Electromagnetism) – GeoGebra[/url] (大学物理)[/*][*][url=https://www.geogebra.org/m/MnDzzYjv]GioGebraで解析力学 – GeoGebra[/url][br][/*][*] [url=https://www.geogebra.org/m/bxcvjpwt]動かしてわかる物理 – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/qszh4rxv]電磁場與電磁波以及大學物理相關 – GeoGebra[/url][/*][*][url=https://www.geogebra.org/m/mk6mv7km]《力学》交互动画(Mechanics) – GeoGebra[/url] 《力学》交互动画(Mechanics),https://www.geogebra.org/m/mk6mv7km[br][/*][*] [/*][*][br][/*][/list][br][br][br]安信的物理绘本[list=1][*][url=https://www.geogebra.org/m/ba4rqcut]物理--波動 – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/z8dzpdsw]物理--近代物理 – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/y374cukw]物理--運動學 – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/r75cwfgh]物理--光學 – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/h4rymxtg]動量守恆相圖分析 – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/tbk835wh]物理--電磁學 – GeoGebra[/url][/*][*] [/*][*] [/*][*] [/*][*] [url=https://www.geogebra.org/u/ellasky?sort=-modified&filter=books]ellasky – 资源 – GeoGebra[/url][/*][*][url=https://www.geogebra.org/m/jbfbvcay]高中物理必修一 – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/q2ffudwz]高中物理必修二 – GeoGebra[/url] [/*][*][url=https://www.geogebra.org/m/jqdby83c]高中物理必修三 – GeoGebra[/url][/*][*][url=https://www.geogebra.org/m/awgfzmfc]高考复习综合题目 – GeoGebra[/url][/*][*] [/*][*] [/*][*][url=https://www.geogebra.org/m/d3pxj8u8]期末作业 – GeoGebra[/url] [/*][*][url=https://www.geogebra.org/m/tkdjev4p]期末作业 – GeoGebra[/url][br][/*][*][br][/*][*][url=https://www.geogebra.org/m/u2pxvzr5]【作业43】高中物理之动态平衡问题 – GeoGebra[/url] [/*][*][url=https://www.geogebra.org/m/jzuxbxmh]【作业3】高中物理-竖直方向的圆周运动专题 – GeoGebra[/url][/*][*][url=https://www.geogebra.org/m/h5w99bc5]期末作业:高中物理-竖直方向的圆周运动专题 – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/v2nsktzw]第八周作业《高中物理之动态平衡问题》 – GeoGebra[/url][/*][*] [/*][*][url=https://www.geogebra.org/u/geogebramooc]GeoGebraMOOC – 资源 – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/iyHvgYRR]物理問題 – GeoGebra[/url] [url=https://www.geogebra.org/u/longlife]官長壽(longlife)[/url] [/*][*][br][/*][*] [/*][*] [/*][*][br][/*][*][br][/*][*][url=https://www.geogebra.org/m/txcthhds]光学 – GeoGebra[/url] (初中)[br][/*][*][url=https://www.geogebra.org/m/r75cwfgh]物理--光學 – GeoGebra[/url][br][/*][*][br][/*][*][br][/*][*][br][/*][*] [/*][*] [/*][*] [/*][/list]
[list=1][/list][list=1][*][url=https://ggb123.cn/m/Eas4jpdD]Chemical Equations (In German by Reiner Hartl)[/url],Autor:[url=https://ggb123.cn/u/lewws]Lew W. S.[/url][/*][*][url=https://ggb123.cn/m/zt9vnnjr]Formulación de compuestos binarios. Nivel básico[/url],(元素周期表),Autor:[url=https://ggb123.cn/u/javier+cayetano]Javier Cayetano Rodríguez[/url][/*][*][url=https://www.geogebra.org/m/ub96acfa]!!!Chemistry2 – GeoGebra[/url][br][/*][*]Geometría molecular,https://www.geogebra.org/m/dgkmqzun[br][/*][*] [/*][*] [/*][/list]
[list=1][*][br][/*][/list]
[list=1][*][url=https://www.geogebra.org/m/xXeXssy4]GeoGebra ve výuce zeměpisu na ZŠ[/url] [/*][*]https://www.geogebra.org/m/gq4ewapb[br][/*][*] [/*][*] [/*][*]在线工具: [url=https://earth.nullschool.net/zh-cn/#current/wind/surface/level/orthographic=121.50,30.72,446/loc=93.185,23.839]earth :: 风、气象、海洋状况的全球地图 (nullschool.net)[/url][/*][/list]
[list=1][*][url=https://ggb123.cn/m/erw7sQV4]Catacaustic[/url](包络线),Autor:[url=https://ggb123.cn/u/roman]Roman Chijner[/url][/*][*]图像绘制 [url=https://www.geogebra.org/m/tb67kepy]Arte com inequações[/url][/*][*][url=https://www.geogebra.org/m/rgwq6k5t]ART,MATHS AND GEOGEBRA[br][/url][url=http://dmentrard.free.fr/GEOGEBRA/art2018/ARTGEOGEBRA.htm]Les outils Excel de Daniel MENTRARD( Faire des mathématiques et des sciences physiques avec excel) (free.fr)[/url][br][url=http://dmentrard.free.fr/GEOGEBRA/art2018/ARTGEOGEBRA.htm]http://dmentrard.free.fr/GEOGEBRA/art2018/ARTGEOGEBRA.htm[/url][br][/*][*][url=https://www.geogebra.org/m/xpywpym8]Parkettierungen [/url] 几何变换[/*][*][url=https://www.geogebra.org/m/gcyjjchr]包絡線[/url] [/*][*][url=https://www.geogebra.org/m/fyx46qab]Geometría del Taxi[/url][/*][*][url=https://www.geogebra.org/m/uD8JgbEa]Mosaic Tiling[/url] [/*][*][url=https://www.geogebra.org/m/yKQJk6C6]成長のらせん – GeoGebra[/url] [/*][*][br][/*][*] [/*][/list]Geometría del Taxi[br]Geometría del Taxi
[list=1][*]Python en Geogebra con PyGgb - Code Snippets,https://www.geogebra.org/m/mvcy7r23[br][/*][*] [/*][/list]
[list=1][*]有理数与无理数 [url=https://www.geogebra.org/m/faafnxqx]https://www.geogebra.org/m/faafnxqx[/url][br]有理数 [url=https://www.geogebra.org/m/RQ3atekQ]https://www.geogebra.org/m/RQ3atekQ[/url][br]走进图形世界 [url=https://www.geogebra.org/m/pfcbckm2]https://www.geogebra.org/m/pfcbckm2[/url][br]点、线、角 [url=https://www.geogebra.org/m/dk4ftuvk]https://www.geogebra.org/m/dk4ftuvk[/url][br]三角形及多邊形 [url=https://www.geogebra.org/m/SqZg8EnY]https://www.geogebra.org/m/SqZg8EnY[/url][br]无字证明 [url=https://www.geogebra.org/m/kJMFUgre]https://www.geogebra.org/m/kJMFUgre[/url][br]作线段和角 [url=https://www.geogebra.org/m/qb3jfzmy#material/kh27d5e8]https://www.geogebra.org/m/qb3jfzmy#material/kh27d5e8[/url][br][br][/*][/list]
[list=1][*][url=https://www.geogebra.org/m/bztdtrgv]GeoGebra Math Resources 1[br][/url][url=https://www.geogebra.org/math?pk_vid=16949228692cfab9]Explore Free Interactive Math Resources for Grades 4-8 - GeoGebra[/url][url=https://geogebra.org/math][img width=393,height=89][/img][/url][br][/*][*][url=https://www.geogebra.org/m/v8kcmfhz]GeoGebra Community Resources[/url][br][url=https://www.geogebra.org/materials]社区资源 – GeoGebra[/url][/*][*][url=https://www.geogebra.org/materials][img width=392,height=86][/img][br][/url][br][/*][*] [url=https://www.geogebra.org/m/v8kcmfhz]GeoGebra Community Resources[/url][/*][*][url=https://www.geogebra.org/m/rjbwhsve]Der CAS-Rechner als Teil der Rechner-Suite[/url][br][/*][*][url=https://www.geogebra.org/m/cdtqzhxu]【教程】计算器套件[/url] [url=https://www.geogebra.org/u/chinachina]GeoGebra爱好者 – 资源 – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/tbnfksx5]学习 GeoGebra 课堂 – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/mathpractice/zh-CN]GeoGebra 数学练习 - 逐步解决代数问题[/url][br][/*][*][url=https://www.geogebra.org/m/XUv5mXTm]Learn GeoGebra Classic – GeoGebra[/url][br][/*][*][url=https://www.geogebra.org/m/y3aufmy8]GeoGebra on Tests – GeoGebra[/url][br][/*][*]GeoGebra Team resources samples,https://www.geogebra.org/m/wcwbpnww[br][/*][*][url=https://www.geogebra.org/m/tbnfksx5]学习 GeoGebra 课堂 – GeoGebra[/url][br][/*][*] [/*][*] [/*][/list]
[list=1][*][br][/*][*]高中练习汇总:https://www.geogebra.org/m/y9fywvcu[br]https://www.geogebra.org/m/bwtsafsp[br][br][br]VR3D https://www.geogebra.org/m/hmyecvnr[br][br][br]https://www.geogebra.org/m/g24yH5Gh[br][br]https://www.geogebra.org/m/gq4ewapb#chapter/379206 [/*][/list]
[url=https://snapcraft.io/geogebra-discovery]Install GeoGebra Discovery on Linux | Snap Store (snapcraft.io)[/url][br][url=https://autgeo.online/off/]Index of /off (autgeo.online)[/url][br][url=https://autgeo.online/]GeoGebra 经典 (autgeo.online)[/url]
[url=https://etcnew.sdut.edu.cn/meol/analytics/resPdfShow.do;jsessionid=B6B778C773FC2E5D42CE8986339B24B3?resId=565133&lid=48056]GeoGebra使用手册 (sdut.edu.cn)[/url]
[url=http://iappideas.com/geocon/]GeoCon HD (iappideas.com)[br][br][/url][url=https://activities.graspablemath.com/]Engaging Algebra Tasks for 6-12th Graders | Graspable Math Activities[/url]
电路在线工具[br][url=https://falstad.com/circuit/circuitjs.html]https://falstad.com/circuit/circuitjs.html[/url][br][url=https://falstad.com/]Paul Falstad[/url][br][url=https://falstad.com/mathphysics.html]Math, Physics, and Engineering Applets (falstad.com)[/url][br][url=https://falstad.com/ripple/]Ripple Tank Simulation (falstad.com)[/url][br][url=https://falstad.com/membrane/]Rectangular Membrane Applet (falstad.com)[/url][br][url=https://falstad.com/loadedstring/]Loaded String Simulation (falstad.com)[br][br][br]https://www.netpad.net.cn/#/[br][br][br][br][br]https://www.umtriebe.de/index.html[/url]