[table][tr][td][math]f(x)=(x-4)^2+1[/math][br][br][br][math]g(x)=\text{-}(x-12)^2+7[/math][/td][td][img][/img][/td][/tr][/table][br][size=100][size=150][math]f\left(1\right)[/math] can be expressed in words as “the value of [math]f[/math] when [math]x[/math] is 1.” Find or compute: [/size][/size][br][br]the value of [math]f[/math] when [math]x[/math] is 1
[math]f\left(3\right)[/math]
[math]f\left(10\right)[/math]
[size=150]Can you find an value that would make [math]f\left(x\right)[/math]:[/size][br][br]Less than 1?
[size=150][math]g\left(9\right)[/math] can be expressed in words as “the value of [math]g[/math] when [math]x[/math] is 9.” Find or compute:[/size][br][br] the value of [math]g[/math] when [math]x[/math] is 9
[math]g\left(13\right)[/math]
[math]g\left(2\right)[/math]
[size=150]Can you find an [math]x[/math] value that would make [math]g\left(x\right)[/math]:[/size][br][br]Greater than 7?
[size=150]The graph that represents [math]p\left(x\right)=\left(x-8\right)^2+1[/math] has its vertex at [math]\left(8,1\right)[/math]. Here is one way to show, without graphing, that [math]\left(8,1\right)[/math] corresponds to the [i]minimum[/i] value of [math]p[/math].[br][br][list][*]When [math]x=8[/math], the value of [math]\left(x-8\right)^2[/math] is 0, because [math]\left(8-8\right)^2=0^2=0[/math].[/*][*]Squaring any number always results in a positive number, so when [math]x[/math] is any value other than 8, [math]\left(x-8\right)[/math] will be a number other than 0, and when squared, [math]\left(x-8\right)^2[/math] will be positive.[/*][*]Any positive number is greater than 0, so when [math]x\ne8[/math], the value of [math]\left(x-8\right)^2[/math] will be greater than when [math]x=8[/math]. In other words, [math]p[/math] has the least value when [math]x=8[/math].[/*][/list][/size]Use similar reasoning to explain why the point [math]\left(4,1\right)[/math] corresponds to the [i]maximum[/i] value of [math]q[/math], defined by [math]q\left(x\right)=-2\left(x-4\right)^2+1[/math].
[size=150]Here is a portion of the graph of function [math]q[/math], defined by [math]q\left(x\right)=-x^2+14x-40[/math].[br][table][tr][td][br][img][/img][/td][td][br][math]ABCD[/math] is a rectangle. Points [math]A[/math] and [math]B[/math] coincide with [br]the [math]x[/math]-intercepts of the graph, and segment [math]CD[/math] just [br]touches the vertex of the graph.[br][/td][/tr][/table][/size][br]Find the area of [math]ABCD[/math]. Show your reasoning.[br]
[size=150]A function [math]A[/math], defined by [math]p(600-75p)[/math], describes the revenue collected from the sales of tickets for Performance A, a musical.[br][br]The graph represents a function [math]B[/math] that models the revenue collected from the sales of tickets for Performance B, a Shakespearean comedy.[br][img][/img][br]In both functions, [math]p[/math] represents the price of one ticket, and both revenues and prices are measured in dollars.[/size][br][br][size=150]Without creating a graph of [math]A[/math], determine which performance gives the greater maximum revenue when tickets are [math]p[/math] dollars each. Explain or show your reasoning.[/size]