1) Z jakého nejmenšího počtu nepřekrývajících se trojúhelníků lze sestavit obecný čtyřúhelník?
2
2) Kolik je potřeba zadaných prvků k sestrojení obecného čtyřúhelníku?
3) Napiš vzorec pro výpočet součtu velikostí vnitřních úhlů v obecném n-úhelníku, kde n je přirozené číslo větší než 2.
[math]180°·\left(n-2\right)[/math] , kde n je počet úhlů (vrcholů) obecného n-úhelníku a n je přirozené číslo větší než 2
4) Napiš, jak je definovaný rovnoběžník, a vyjmenuj čtyři známé zástupce rovnoběžníku.
Rovnoběžník je čtyřúhelník, ve kterém dvojice protějších stran[br]jsou shodné a navzájem rovnoběžné úsečky. Známými zástupci rovnoběžníků jsou:[br]čtverec, obdélník, kosodélník a kosočtverec.
5) Z uvedené nabídky vyberte rovnoběžník, resp. rovnoběžníky, jehož (jejichž) úhlopříčky svírají pravý úhel.
6) Který geometrický obrazec je znázorněn na obrázku níže? Kolik je třeba informací/zadaných prvků na jeho sestrojení?
Na obrázku je deltoid, je potřeba 3 informací na jej sestrojení, přičemž alespoň jedna informace musí mít rozměr délky.
7) Ve kterých čtyřúhelnících jsou uhlopřícky půleny svým průsečíkem? (Poznámka: u jednoho čtyřúhelníku ve výběru dole to platí jen u jedné úhlopříčky.)
8) Kolik je třeba dat k sestrojení pravoúhlého, nebo rovnoramenného trojúhelníku? A proč?
Obecný trojúhelník je dán třemi informacemi, přičemž jedna musí být rozměru délky. Tím, že konstruujeme pravoúhlý trojůhelník, je jedna informace již dána tímto pravým úhlem. Tak nám stačí pro úplné určení pravoúhlého trojúhelníku ještě dvě dodatečné informace. V případě rovnoramenného trojúhelníku je jedna informace již dána shodností dvou stran trojúhelníku. Pro úspěšné sestrojení trojúhelníku tohoto typu potřebujeme i v tomto případě jen dvě dodatečné informace.
9) K sestrojení pravoúhleho a rovnoramenného lichoběžníku je třeba stejného počtu informací. Kolik to je informací pro každý z uvedených lichoběžníků? A proč? Využij otázku 8) a obrázek níže.
Pro oba druhy lichoběžníků je třeba stejný počet dat, 3, o stupeň volnosti navíc než pro rovnostranný nebo pravoúhlý trojúhelník. Jedna volnost navíc se dá prezentovat posunováním příčky (červené body).
10) Kolik informací potřebuji k sestrojení čtverce a obdélníku?
11) Jaké dvě vlastnosti mají společné čtverec a kosodélník?
Mají každé protilehlé strany rovnoběžné a jejich úhlopříčky se vzájemně půlí. Pokud budeme uvažovat i kosočtverec, jako kosodélník se čtyřmi stejnými stranami, potom další vlastností, kterou mají společnou, je shodnost všech jejich čtyř stran.
12) Co musí platit, aby byl úhel u vrcholu kosodélníku půlen úhlopříčkou? Využij interaktivní obrázek dole.
Musí platit, že strany musí být u jednoho vrcholu stejně dlouhé. Což platí pro kosočtverec.
13) Jak spočteme obvod jakéhokoli n-úhelníka, kde n je přirozené číslo větší než 2? Jak spočteme obsah jakéhokoli rovnoběžníku?
Obvod mnohoúhelníku se vypočte jako součet délek všech jeho stran.[br]Obsah rovnoběžníku se vypočte jako součin délky výšky sestrojené ke kterékoliv straně rovnoběžníku a délky této příslušné strany.
14) Jak se spočte obsah obecného lichoběžníka?
15) Vyberte správná tvrzení o tom, jak bychom mohli počítat obsah čtyřúhelníku pomocí délek jeho úhlopříček? (Může být i více správných možností.)