Limits of functions

Task
Calculate the limits of the following functions:[br][math]f\left(x\right)=\frac{sin\left(x\right)}{x}[/math] for [math]x\longrightarrow0[/math][br][math]g\left(x\right)=\frac{1}{x}[/math] for [math]x\longrightarrow0^-[/math] and for [math]x\longrightarrow0^+[/math][br][math]h\left(x\right)=\frac{x^3+2x-15}{3x^3+10x^2-x+6}[/math] for [math]x\longrightarrow\infty[/math][br]
Explore the construction...
Instructions
[table][tr][td]1.[/td][td]Enter the function [math]f(x)=\frac{sin\left(x\right)}{x}[/math] into the [i]Input Bar[/i] and press [i]Enter[/i].[/td][/tr][tr][td]2.[/td][td]Enter the command [math]Limit\left(f,0\right)[/math] into the [i]Input Bar[/i] and press [i]Enter[/i] to calculate the limit of [i]f(x)[/i] for [math]x\longrightarrow0[/math].[/td][/tr][tr][td]3.[/td][td]Enter the function [math]g(x)=\frac{1}{x}[/math] into the [i]Input Bar[/i] and press [i]Enter[/i].[/td][/tr][tr][td]4.[/td][td]To calculate the left-sided limit of [i]g(x)[/i] for [math]x\longrightarrow0[/math] enter the command [math]LimitBelow(g,0)[/math] into the [i]Input Bar[/i].[/td][/tr][tr][td]5.[/td][td]To calculate the right-sided limit of [i]g(x)[/i] for [math]x\longrightarrow0[/math] enter the command [math]LimitAbove(g,0)[/math] into the [i]Input Bar[/i].[/td][/tr][tr][td]6.[/td][td]Enter the function [math]h\left(x\right)=\frac{x^3+2x-15}{3x^3+10x^2-x+6}[/math] into the [i]Input Bar[/i] and press [i]Enter[/i].[/td][/tr][tr][td]7.[/td][td]Calculate the limit of [i]h(x)[/i] for [math]x\longrightarrow\infty[/math] by entering [math]Limit\left(h,\infty\right)[/math] into the [i]Input Bar[/i].[br][b]Hint:[/b] To enter [math]\infty[/math], put in the word [i]infinity[/i].[/td][/tr][/table]
Try it yourself...

Information: Limits of functions