If we know the temperature in degrees Celsius, C, we can find the temperature in degrees Fahrenheit, F, using the equation:[br][br][img][/img][br]Find the degrees Fahrenheit for each of the following:[br]a) 0° Celsius = ____° Fahrenheit[br]b) 100° Celsius = ____° Fahrenheit[br]c) 25° Celsius = ____° Fahrenheit
a) 32° Fahrenheit[br]b) 212° Fahrenheit[br]c) 77° Fahrenheit
[img][/img][br]The equation above represents a function. [br]Write an equation to represent the [b]inverse function[/b], in other words: if we know the temperature in degrees Fahrenheit, F, we can find the temperature in degrees Celsius, C.
[img][/img][br]Solve the given equation for C.
Use your equation from above to find the degrees Celsius for each of the following:[br]a) 104° Fahrenheit = ____° Celsius[br]b) 50° Fahrenheit = ____° Celsius[br]c) 62.6° Fahrenheit = ____° Celsius
a) 40° Celsius[br]b) 10° Celsius[br]c) 17° Celsius
Here are the graphs of the two functions from above relating temperature in Celsius and in Fahrenheit, notice how the input and output variables are switched.[br][br][img][/img][br]The two points on each graph mark the boiling temperature and freezing temperature. In both graphs, the boiling temperature, 100° C, is paired with 212° F, and the freezing temperature, 0° C, is[br]paired with 32° F, but the C-value and F-value show up in a different order in the coordinate pairs.