IM Geo.2.11 Lesson: Side-Side-Angle (Sometimes) Congruence

What do you notice? What do you wonder?
In triangles [math]GBD[/math] and [math]KHI[/math]:[br][list][*]Angle [math]GBD[/math] is congruent to angle [math]KHI[/math].[/*][*]Segment [math]BD[/math] is congruent to segment [math]HI[/math].[/*][*]Segment [math]DG[/math] is congruent to segment [math]IK[/math].[/*][/list]
Use the applet below to make a triangle using the given angle and side lengths so that the given angle is not between the 2 given sides. Try to make your triangle different from the triangles created by the other people in your group.[br][list][*]Angle: [math]40^{\circ}[/math][/*][*]Side length: 6 cm[/*][*]Side length: 8 cm[/*][/list]
Your teacher will assign you some sets of information.
[list][*]For each set of information, use the applet below to make a triangle using that information.[/*][*]If you think you can make more than one triangle, make more than one triangle.[/*][*]If you think you can’t make any triangle, note that.[/*][/list]
When you are confident they are accurate, create a visual display.
Triangle ABC is shown. Use your straightedge and compass to construct a new point D on line AC so that the length of segment BD is the same as the length of segment BC.
[size=150]Now use the straightedge and compass to construct the midpoint of [math]CD[/math]. Label that midpoint [math]M[/math].[/size][br][br]Explain why triangle [math]ABM[/math] is a right triangle.[br]
Explain why knowing the angle at [math]A[/math] and the side lengths of [math]AB[/math] and [math]BC[/math] was not enough to define a unique triangle, but knowing the angle at [math]A[/math] and the side lengths of [math]AB[/math] and [math]BM[/math] would be enough to define a unique triangle.[br]

IM Geo.2.11 Practice: Side-Side-Angle (Sometimes) Congruence

Which of the following criteria [i]always [/i]proves triangles congruent? Select [b]all[/b] that apply. 
[size=150]Here are some measurements for triangle [math]ABC[/math] and triangle [math]XYZ[/math]:[br][/size][list][*]Angle [math]ABC[/math] and angle [math]XYZ[/math] are both [math]30°[/math][/*][*][math]BC[/math] and [math]YZ[/math] both measure 6 units[/*][*][math]CA[/math] and [math]ZX[/math] both measure 4 units[/*][/list]Lin thinks these triangles must be congruent. Priya says she knows they might not be congruent. Construct 2 triangles with the given measurements that aren't congruent.Explain why triangles with 3 congruent parts aren't necessarily congruent.
Jada states that diagonal WY bisects angles ZWX and ZYX.
Is she correct? Explain your reasoning.
[img][/img][br]Select [b]all[/b] true statements based on the diagram.
WXYZ is a kite. Angle WXY has a measure of 94 degrees and angle ZWX has a measure of 112 degrees.
Find the measure of angle [math]ZYW[/math].
Andre is thinking through a proof using a reflection to show that a triangle is isosceles given that its base angles are congruent.
[img][/img][br][size=150]Complete the missing information for his proof. [br]Construct [math]AB[/math] such that [math]AB[/math] is the perpendicular bisector of segment [math]CD[/math]. We know angle [math]ADB[/math] is congruent to [img][/img]. [math]DB[/math] is congruent to [img][/img] since [math]AB[/math] is the perpendicular bisector of [math]CD[/math].  Angle [img][/img] is congruent to angle [img][/img] because they are both right angles. Triangle [math]ABC[/math] is congruent to triangle [img][/img] because of the [img][/img] Triangle Congruence Theorem. [math]AD[/math] is congruent to [img][/img] because they are corresponding parts of congruent triangles. Therefore, triangle [math]ADC[/math] is an isosceles triangle.[/size]
The triangles are congruent.
[img][/img]

Information