Unit: 1.1.1 (b)Function

Exercise: 1.1.1. (b)[br][br]1. (a) Write the maximum and minimum values of [math] f(x) = \sin x [/math] .[br]Solution:[br]The maximum and minimum values of [math] f(x) = \sin x [/math] are +1 and -1 respectively.[br][br]1. (b) Write the maximum and minimum values of [math] f(x) = \cos x [/math] [br]Solution:[br]The maximum and minimum values of [math] f(x) = \cos x [/math] are +1 and -1 respectively.[br][br]1. (c) Write the maximum and minimum values of [math] f(x) = \tan x [/math] .[br]Solution:[br]The maximum and minimum values of [math] f(x) = \tan x [/math] are [math] + \infty [/math] and [math] - \infty [/math] respectively.[br][br]2. (a) Write the period of [math] f(x) = \sin x [/math] [br]Solution: [br]The period of [math] f(x) = \sin x [/math] is [math] 2\pi [/math] .[br][br]2. (b) Write the period of [math] f(x) = \cos x [/math] [br]Solution: [br]The period of [math] f(x) = \cos x [/math] is [math] 2\pi [/math] .[br][br]2. (c) Write the period of [math] f(x) = \tan x [/math] [br]Solution: [br]The period of [math] f(x) = \tan x [/math] is [math] \pi [/math] [br][br]3. (a) Draw the graph of [math] f(x) = \sin x ( -\pi \le x \le \pi ) [/math] [br]Solution: [math] \copyright Ambik [/math] [br]Given, [math] f(x) = \sin x ( - \pi \le x \le \pi ) [/math][br]Let us take the values of x differing 90° and corresponding values of y for [math] y = \sin x[/math]. The maximum and minimum values of [math] \sin x [/math] are 1 and [math] -1 [/math] respectively.[br][math] \begin{tabular}{|c|c|c|c|c|c|}[br]\hline [br]x & -\pi^c & -\frac{\pi^c}{2} & 0 & \frac{\pi^c}{2} & \pi^c \\[br]\hline[br]y = \sin x & 0 & - 1 & 0 & 1 & 0 \\ [br]\hline[br]\end{tabular} [/math][br][img][/img][br][br]3. (b) Draw the graph of [math] f(x) = \cos x ( 0 \le x \le 2\pi ) [/math] [br]Solution:[br]Given, [math] f(x) = \cos x (0 \le x \le 2\pi ) [/math][br]Let us take the values of x differing 90° and corresponding values of y for [math] y = \cos x. [/math] The maximum and minimum values of [math] \cos x [/math] are 1 and [math] -1 [/math] respectively.[br]Now, [math] \begin{tabular}{|c|c|c|c|c|c|}[br]\hline [br]x & 0 & \frac{\pi^c}{2} & \pi^c & \frac{3\pi^c}{2}& 2\pi^c \\[br]\hline[br]y = \cos x & 1 & 0 & -1 & 0 & 1 \\ [br]\hline[br]\end{tabular} [/math][br][img][/img][br]3. (c) Draw the graph of [math] f(x) = \tan x ( 0 \le x \le \pi ) [/math] [br]Solution: [br]Given, [math] f(x) = \tan x \ ( 0\le x \le \pi ) [/math] [br]Now, [math] \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}[br]\hline [br]x & 0 & \frac{\pi^c}{6} & \frac{\pi^c}{4} & \frac{\pi^c}{3}& \frac{\pi^c}{2} & \frac{2\pi^c}{3} & \frac{3\pi^c}{4} & \frac{5\pi^c}{6}& \pi^c \\[br]\hline[br]y = \tan x & 0 & 0.58 & 1 & 1.73 & \text{Undefined} & - 1.73 & - 1 & - 0.58 & 0\\[br]\hline[br]\end{tabular} [/math][br][img][/img][br][br]3. (d) Draw the graph of [math] f(x) = 2\sin x \left( -\frac{\pi}{2} < x < \frac{\pi}{2} \right) [/math] [br]Solution: [br]Given, [math] \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}[br]\hline [br]x & \frac{-\pi^c}{2} & \frac{-\pi^c}{3} & \frac{-\pi^c}{4}& \frac{\pi^c}{6} & 0 & \frac{\pi^c}{6} & \frac{\pi^c}{4} & \frac{\pi^c}{3} & \frac{\pi^c}{2} \\[br]\hline[br]y = 2 \sin x & - 2 & - 1.73 & -1.41& - 1 & 0 &1&1.41&1.73&2 \\ [br]\hline[br]\end{tabular} [/math][br] [img][/img][br][br]4. Study the topic 'sound' in physics of your science book and find the nature of longitudinal wave. Relate this concept with trigonometric function.[br]Solution:[br]The nature of longitudinal wave is like the graph of sine function.

Information: Unit: 1.1.1 (b)Function