IM Geo.3.6 Practice: Connecting Similarity and Transformations

Find a sequence of rigid motions and dilations that takes square [math]ABCD[/math] to square [math]EFGH[/math].[br][img][/img]
Quadrilaterals Q and P are similar.
[img][/img][br][br]What is the scale factor of the dilation that takes [math]P[/math] to [math]Q[/math]?[br]
What is the scale factor of the dilation that takes [math]Q[/math] to [math]P[/math]?[br]
What is our definition of similarity?
Triangle [math]DEF[/math] is formed by connecting the midpoints of the sides of triangle [math]ABC[/math]. [br][img][/img][br][br]The lengths of the sides of [math]DEF[/math] are shown. What is the length of [math]BC[/math]?
If [math]AB[/math] is 12, what is the length of [math]A'B'[/math]? [br][img][/img]
[size=150]Right angle [math]ABC[/math] is taken by a dilation with center [math]P[/math] and scale factor [math]\frac{1}{2}[/math] to angle [math]A'B'C'[/math]. What is the measure of angle [math]A'B'C'[/math]?[/size]
Use the applet below:
[list][*][size=150]Dilate point [math]C[/math] using center [math]D[/math] and scale factor [math]\frac{3}{4}[/math].[br][/size][/*][*][size=150][size=150]Dilate segment [math]AB[/math] using center [math]D[/math] and scale factor [math]\frac{1}{2}[/math].[/size][/size][/*][/list]
A polygon has perimeter 12. It is dilated with a scale factor of [math]k[/math] and the resulting image has a perimeter of 8. What is the scale factor? 
[size=150]Select [b]all [/b]the statements that [i]must[/i] be true.[/size]
Chiudi

Informazioni: IM Geo.3.6 Practice: Connecting Similarity and Transformations