Unit 1.2.3 (B) : Factor theorem

1. (a) State factor theorem.[br]Solution:[br]If [math] x-a [/math] is a factor of [math] f(x) [/math] then [math] f(a) = 0 [/math][br]OR[br]If [math] f(a) = 0 [/math] then [math] x-a [/math] is a factor of [math] f(x) [/math].[br][br]1. (b) If [math] (x-a) [/math] is a factor of [math] x^n - a^n [/math], what is the degree of quotient.[br]Solution:[br]The degree of quotient is [math] n - 1 [/math].[br][br]2. In each of the following, use factor theorem to find whether [math] g(x) [/math] is a factor of polynomial [math] f(x) [/math] or not?[br](a) [math] f(x) = x^3 + 9x^2 + 27x + 27; \ \ \ g(x) = x + 3 [/math][br]Solution:[br]Here, [math] f(x) = x^3+9x^2+27x+27 [/math][br]And [math] g(x) = x+ 3 [/math][br]Zero of [math] x+3 [/math] is [math] - 3 [/math][br][math] \begin{align} \text{ Remainder } & = f (-3) \\ & = (-3)^3+9(-3)^2+27(-3) + 27 \\ & = -27 + 81 - 81 + 27 \\ & = 0 \end {align} [/math] [br][math] \therefore \ g(x) [/math] is a factor of polynomial [math] f(x).[/math][br][br](b)[math] f(x) = x^3 + x^2 + 27x + 27, g(x) = x + 3 [/math][br]Solution:[br]Here, [math] f(x) = x^3+x^2+27x+27 [/math][br]And [math] g(x) = x+3 [/math] [br]Zero of [math] x+3 [/math].[br][math] \begin{align} \text{Remainder } & = f(-3) \\ & = (-3)^3+(-3)^2+27(-3)+27\\ & = -27 +9 - 81 +27 \\ & = -72 \neq 0 \end{align} [/math][br][math] \therefore g(x) [/math] is not a factor of polynomial [math] f(x) [/math]. [br][br](c) [math] f(x) = x^3 + 6x^2 + 7x + 9, g(x) = x – 2 [/math][br]Solution:[br]Here, [math] f(x) = x^3+6x^2+7x+9 [/math][br]And [math] g(x) = x-2 [/math][br]Zero of [math] x-2 [/math] is 2.[br][math] \begin{align} \text{Remainder } & = f(2) \\ & = 2^3+6(2)^2+7(2)+9 \\ & = 8 + 24 + 14 + 9 \\ & = 55 \neq 0 \end{align} [/math][br][math] \therefore g(x) [/math] is not a factor of polynomial [math] f(x) [/math]. [br][br](d) [math] f(x) = 3x^3 + x^2 – 20x + 12, g(x) = 3x – 2 [/math][br]Solution:[br]Here, [math] f(x) = 3x^3 + x^2 – 20x + 12 [/math][br]And [math] g(x) = 3x – 2 [/math][br]Zero of [math] 3x – 2 [/math] is [math] \frac{2}{3} [/math].[br][math] \begin{align} \text{Remainder } & = f\left(\frac{2}{3}\right) \\ & = 3\left(\frac{2}{3}\right) ^3+\left(\frac{2}{3}\right) ^2-20\left(\frac{2}{3}\right) +12 \\ & = 3\left(\frac{8}{27}\right) + \frac{4}{9}-\frac{40}{3} +12 \\ & = \frac{8+4-40\times 3 + 12\times 9 }{9} \\ & = \frac{8+4-120+180}{9} \\ & = \frac{0}{9} \\ & = 0 \end{align} [/math][br][math] \therefore g(x) [/math] is a factor of polynomial [math] f(x) [/math]. [br][br](e) [math] f(x) = 8x^3 – 4x^2 + 7x + 9; g(x) = 2x + 1 [/math][br]Solution:[br]Here, [math] f(x) = 8x^3 – 4x^2 + 7x + 9 [/math][br]And [math] g(x) = 2x + 1 [/math][br]Zero of [math] 2x + 1 [/math] is [math] \frac{-1}{2} [/math].[br][math] \begin{align} \text{Remainder } & = f\left(\frac{-1}{2}\right) \\ & = 8\left(\frac{-1}{2}\right)^3-4\left(\frac{-1}{2}\right)^2+7\left(\frac{-1}{2}\right)+9 \\ & = 8\left(\frac{-1}{8}\right) -4\left(\frac{1}{4}\right)-\frac{7}{2}+9 \\ & = -1-1-\frac{7}{2}+9 \\ & = \frac{-2-2-7+18}{2} \\ & = \frac{7}{2} \neq 0 \end{align} [/math][br][math] \therefore g(x) [/math] is not a factor of polynomial [math] f(x) [/math]. [br][br]3. (a) Find the value of [math] k [/math] , if [math] x + 3 [/math] is a factor of [math] 3x^2 + kx + 6 [/math][br]Solution:[br]Let, [math] f(x) = 3x^2+kx+6 [/math] [br]Zero of [math] x+3 [/math] is -3.[br]As [math] x+3 [/math] is a factor of f(x),[br][math] \begin{align} & \text{Remainder } = 0 \\ & \text{ or, } f(-3 ) = 0 \\ & \text{ or, } 3(-3)^2+k(-3)+6=0 \\ & \text{ or, } 27-3k+6=0 \\ & \text{ or, } 33=3k \\ & \text{ or, } k=\frac{33}{11} \\ & \therefore k=11 \end{align} [/math] [br][br][br]3. (b) Find the value of [math] k [/math], if [math] x + 1[/math] is a factor of [math] x^3 – kx^2 – 3x – 6 [/math] [br]Solution:[br]Let, [math] f(x) = x^3 – kx^2 – 3x – 6 [/math] [br]Zero of [math] x+1 [/math] is -1.[br]As [math] x+3 [/math] is a factor of f(x),[br][math] \begin{align} & \text{Remainder } = 0 \\ & \text{ or, } f(-1 ) = 0 \\ & \text{ or, } (-1)^3-k(-1)^2-3(-1)-6 =0 \\ & \text{ or, } -1-k+3-6=0 \\ & \text{ or, } -k-4=0 \\ & \text{ or, } -k=4 \\ & \therefore k=-4 \end{align} [/math] [br][br]3. (c) Find the value of [math] m [/math], for which [math] 2x^4 – 4x^3 + mx^2 + 2x + 1 [/math] is exactly divisible by [math]1 – 2x.[/math][br]Solution:[br]Let, [math] f(x) = 2x^4 – 4x^3 + mx^2 + 2x + 1 [/math] [br]Zero of [math] 1 – 2x [/math] is [math] \frac{1}{2} [/math] .[br]As [math] 1 – 2x [/math] is a factor of f(x),[br][math] \begin{align} & \text{Remainder } = 0 \\ & \text{ or, } f( \frac{1}{2}) = 0 \\ & \text{ or, } 2\left( \frac{1}{2} \right)^4 -4 \left( \frac{1}{2} \right)^3 +m\left( \frac{1}{2} \right)^2 +2\left( \frac{1}{2}\right)+1=0 \\ & \text{ or, } 2\times \frac{1}{16} -4\times \frac{1}{8} +m\times \frac{1}{4}+1+1=0\\ & \text{ or, } \frac{1}{8}-\frac{1}{2}+\frac{m}{4}+2=0 \\ & \text{ or, } \frac{1-4+2m+16}{8} = 0 \\ & \text{ or, } [br] 2m+13 = 0 \\ & \text{ or, } 2m= -13 \\ & \therefore m = - \frac{13}{2} \end{align} [/math] [br][br]4. Factorize the following by using factor theorem.[br](a) [math] 2x^3 + 3x^2 – 3x – 2 [/math] [br]Solution:[br]Let, [math] f(x) = 2x^3 + 3x^2 – 3x – 2 [/math][br]Possible factors of 2 are [math] \pm 1, \pm 2 [/math][br][math] \begin{align} \text{Now}, \\ f(1) & = 2(1)^3+3(1)^2 -3(1)-2 \\ & = 2 +3-3 -2 \\ & = 0 \end{align} [/math][br][math] \therefore x-1 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } & = 2x^2+5x+2 \\ & = 2x^2 +(4+1)x +2 \\ & = 2x^2 +4x+x+2 \\ & = 2x(x+2) +1 (x+2) \\ & = (x+2)(2x+1) \\ \therefore f(x) & = (x-1) (x+2) (2x+1) \end{align} [/math][br][br]4(b) [math] x^3 + 2x^2 - x -2 [/math][br]Solution:[br]Let, [math] f(x) = x^3 + 2x^2 - x -2 [/math][br]Possible factors of 2 are [math] \pm 1, \pm 2 [/math][br][math] \begin{align} \text{Now}, \\ f(1) & = (1)^3+2(1)^2 -1-2 \\ & = 1+2-1-2 \\ & = 0 \end{align} [/math][br][math] \therefore x-1 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } & = x^2+3x+2 \\ & = x^2 +(2+1)x +2 \\ & = x^2 + 2x +x +2 \\ & = x(x+2)+1(x+2) \\ & = (x+2)(x+1) \\ \therefore f(x) & = (x-1)(x+2)(x+1) \end{align} [/math][br][br]4(c) [math] y^3 - 6y^2 + 3y + 10 [/math][br]Solution:[br]Let, [math] f(y) = y^3 - 6y^2 + 3y + 10 [/math][br]Possible factors of 2 are [math] \pm 1, \pm 2 , \pm 5, \pm 10 [/math][br][math] \begin{align} \text{Now}, \\ f(2) & = 2^3-6(2)^2+3(2)+10 \\ & = 8-24+6+10 \\ & = 0 \end{align} [/math][br][math] \therefore y -2 [/math] is a factor of [math] f(y) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math]\begin{align} \text{Quotient } &= y^2-4y-5\\ &= y^2-(5-1)y-5\\ &= y^2-5y+y-5 \\ &= y(y-5)+1(y-5)\\ &= (y-5)(y+1)\\ \therefore f(y) &=(y-2)(y-5)(y+1) \end{align}[/math][br][br]4(d) [math] x^3 + 13x^2 + 32x + 20 [/math] [br]Solution:[br]Let, [math] f(x) = x^3 + 13x^2 + 32x + 20 [/math][br]Possible factors of 2 are [math] \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20 [/math][br][math] \begin{align} \text{Now}, \\ f(-2) & = (-2)^3+13(-2)^2+32(-2)+20 \\ & = -8+52-64+20 \\ & = 0 \end{align} [/math][br][math] \therefore x+2 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } & = x^2 + 11x+ 10 \\ & = x^2 + 10x + x + 10 \\ & = x(x+10) + 1( x+10) \\ & = (x+10)(x+1) \\ \therefore f(x) & = (x+1)(x+2)(x+10) \end{align} [/math][br][br]4(e) [math] 2x^3 + x^2 – 2x – 1 [/math][br]Solution:[br]Let, [math] f(x) = 2x^3 + x^2 – 2x – 1 [/math][br]Possible factors of 2 are [math] \pm 1, \pm \frac{1}{2} [/math][br][math] \begin{align} \text{Now}, \\ f(1) & = 2(1)^3+1^2-2(1)-2 \\ & = 2+1-2-1 \\ & = 0 \end{align} [/math][br][math] \therefore x-1 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient} & = 2x^2+3x+1 \\ & = 2x^2 + 2x + x + 1 \\ & = 2x(x+1) + 1(x+1) \\ & = (x+1)(2x+1) \\ \therefore f(x) & = (x-1)(x+1)(2x+1) \end{align} [/math][br][br]4(f) [math] x^3 – 23x^2 + 142x – 120 [/math][br]Solution:[br]Let, [math] f(x) = x^3 – 23x^2 + 142x – 120 [/math][br]Possible factors of 2 are [math] \pm 1, \pm 2, \pm 3, \pm 5 \text{ etc } [/math][br][math] \begin{align} \text{Now}, \\ f(1) & = 1^3-23(1)^2+142(1)-120 \\ & =1 -23 + 142 -120 \\ & = 0 \end{align} [/math][br][math] \therefore x-1 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } & = x^2 - 22x + 120 \\ & = x^2 - 12x - 10x +120 \\ & = x(x-12) -10(x-12) \\ & = (x-12)(x-10) \\ \therefore f(x) & = (x-1)(x-10)(x-12) \end{align} [/math][br][br]4(g) [math] (x – 1) (2x^2 + 15x + 15) – 21 [/math] [br]Solution:[br][math] \begin{align} \text{Let, } f(x) & = (x – 1) (2x^2 + 15x + 15) – 21\\ & = 2x^3 +15x^2+15x-2x^2-15x-15-2 \\ & = 2x^3+13x^2-36 \end{align} [/math][br]Possible factors of 36 are [math] \pm 1, \pm 2, \pm 3, \pm 4 \text{ etc } [/math][br][math] \begin{align} \text{Now}, \\ f(-2) & = 2(-2)^3+13(-2)^2-36 \\ & =-16+52-36 \\ & = 0 \end{align} [/math][br][math] \therefore x+2 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } & = 2x^2+9x-18 \\ & = 2x^2 +12x - 3x - 18 \\ & = 2x(x+6) -3 (x+6) \\ & = (x+6)(2x-3) \\ \therefore f(x) & = (x+2)(x+6)(2x-3) \end{align} [/math][br][br]5. Use factor theorem and solve for [math] x [/math].[br](a) [math] x^3 – 4x^2 – 7x + 10 = 0 [/math] [br]Solution:[br]Let [math] f(x) = x^3-4x^2-7x+10 [/math][br]Possible factors of 10 are [math] \pm 1, \pm 2, \pm 5, \pm 10 [/math][br][math] \begin{align} \text{Now, } f(1) & = 1^3-4(1)^2-7(1)+10 \\ & = 1-4-7+10 \\ & = 0 \end{align} [/math][br][math] \therefore x-1 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } & = x^2 - 3x -10 \\ & = x^2 -5x + 2x - 10 \\ & = x(x-5) + 2(x-5) \\ & = (x-5)(x+2) \\ \therefore f(x) & = (x-1)(x-5)(x+2) \\ \text{or, } 0 & = (x-1)(x-5)(x+2) \end{align} [/math][br][math][br]\begin{tabular}{|l |l |l | }[br]\hline[br]\text{Either} & \text{Or} & \text{Or} \\[br]x-1=0 & x-5 = 0 & x+2 =0 \\[br]\text{or, } x =1 & \text{or, } x=5 & \text{or, } x= -2 \\[br]\hline[br]\end{tabular}[br][/math][br][math] \therefore x= 1, 5, -2 [/math][br][br]5(b) [math] x^3 + 4x^2 + x – 6 = 0 [/math][br]Solution:[br]Let [math] f(x) = x^3+4x^2+x-6 [/math] [br]Possible factors of 6 are [math] \pm 1, \pm 2, \pm 3, \pm 6 [/math][br][math] \begin{align} \text{ Now, } f(1) & = 1^3+4(1)^2+1-6 \\ & = 1+4+1 -6 \\ & = 6-6 \\ & = 0 \end{align} [/math] [br][math] \therefore x-1 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{ Quotient } & = x^2 +5x+6 \\ & = x^2 +3x+2x+6 \\ & = x(x+3) +2 (x+3) \\ & = (x+3)(x+2) \\ \therefore f(x) & = (x-1)(x+2) (x+3) \\ \text{or, } 0 & = (x-1)(x+2)(x+3) \end{align} [/math][br][math] \begin{tabular} { | l | l | l | } \hline \text{ Either } & \text{Or } & \text { Or } \\ x-1 =0 & x+2= 0 & x+3 = 0 \\ \text {or, } x=1 & \text{or, } x=-2 & \text {or, } x = -3 \\ \hline \end{tabular} [/math][br][math] \therefore x = 1, -2, -3 [/math][br][br]5(c) [math] 3x^3 – x^2 – 3x + 1 = 0 [/math][br]Solution:[br]Let [math] f(x) = 3x^3-x^2-3x+1 [/math][br]Possible factors are [math] \pm 1, \pm \frac{1}{3} [/math][br][math] \begin{align} \text{Now, } f(1) &= 3(1)^3-1^2-3(1)+1 \\ & = 3-1-3+1 \\ & = 0 \end{align} [/math][br][math] \therefore x - 1 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient} & = 3x^2 +2x-1 \\ & = 3x^2+3x-x-1 \\ & = 3x(x+1) -1(x+1) \\ & = (x+1)(3x-1)\\ \therefore f(x) & = (x-1)(x+1)(3x-1) \\ \text{or, } 0 & = (x-1)(x+1)(3x-1) \end{align} [/math][br][math] \begin{tabular}{ | l | l | l | } \hline \text{Either} & \text{ Or} & \text{Or } \\ x-1 =0 & x+1 = 0 & 3x-1 = 0 \\ \text{or, } x=1 & \text{or, } x=-1 & \text{or, } x =\frac{1}{3}\\ \hline \end{tabular} [/math][br][math] \therefore x= \pm 1, \frac{1}{3} [/math] [br]5(d) [math] x^3-3x^2-9x-5=0 [/math] [br]Solution:[br]Let, [math] f(x) = x^3-3x^2-9x-5=0 [/math][br]Possible factors of 5 are [math] \pm 1, \pm 5 [/math][br][math] \begin{align} f(-1) & = (-1)^3-3(-1)^2-9(-1)-5 \\ & = -1-3+9-5 \\ = & 0 \end{align} [/math] [br][math] \therefore x +1 [/math] is a factor of [math] f(x) [/math][br]Now using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } & = x^2-4x-5 \\ & = x^2 -5x+x-5 \\ & = x(x-5) + 1(x-5) \\ & = (x-5)(x+1) \\ \therefore f(x) & = (x+1)(x+1)(x-5) \\ \text{or, } 0 & = (x+1)(x+1)(x-5) \end{align} [/math][br][math] \begin{tabular} {|l|l|l|} \hline \text{Either} & \text{Or } & \text{Or } \\ x+1=0 & x+1 =0 & x-5= 0 \\ \text{or, } x= -1 & \text{or, } x= -1 & \text{or, } x= 5 \\ \hline \end{tabular} [/math][br] [br]5(e) [math] x^3 – 3x^2 – 10x + 24 = 0 [/math][br]Solution:[br]Let, [math] f(x) = x^3 – 3x^2 – 10x + 24 [/math][br]Possible factors of 24 are [math] \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24 [/math][br][math] \begin{align} \text{Now, } f(2) & = 2^3 -3(2)^2-10(2)+24 \\ & = 8-12-20+24\\ & = 32 - 32 \\ & = 0 \end{align} [/math] [br][math] \therefore x -2 [/math] is a factor of [math] f(x) [/math] [br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } & = x^2-x-12 \\ & = x^2 -(4-3)x -12 \\ & = x^2 -4x+3x-12 \\ & = x(x-4)+3(x-4) \\ & = (x-4)(x+3) \\ \therefore f(x) & = (x-2)(x-4)(x+3) \\ \text{or, } 0 & = (x-2)(x-4)(x+3) \end{align} [/math] [br][math] \begin{tabular}{|l|l|l| } \hline \text{Either} & \text{Or} & \text{Or}\\[br]x-2=0 & x-4 =0 & x+3 =0 \\[br]\text{or, } x =2 & \text{or, } x=4 & \text{or, } x=-3 \\ \hline \end{tabular} [/math][br][math] \therefore x = 2,4,-3 [/math][br][br]5(f) [math] y^3 + 11y = 6y^2 + 6 [/math][br]Solution:[br]Given,[br][math] y^3+11y=6y^2+6 \\ or, y^3-6y^2+11y-6 = 0 [/math][br][math] \text{Let, } f(y) =y^3-6y^2+11y-6 [/math] [br]Possible factors of 6 are [math] \pm 1, \pm 2, \pm 3, \pm 6 [/math][br][math] \begin{align} \text{Now, } f(1) & = 1^3-6(10^2+11(1)-6 \\ & = 1-6+11-6 \\ & = 0 \\ \end{align} [/math] [br][math] \therefore y-1 [/math] is a factor of [math] f(y) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } &= y^2-5y+6 \\ & = y^2 - 3y -2y + 6 \\ & = y(y-3) -2(y-3) \\ & = (y-3)(y-2) \\ \therefore f(y) & = (y-1)(y-2)(y-3) \\ \text{or, } 0 & = (y-1)(y-2)(y-3) \end{align} [/math][br][br][math] \begin{tabular}{ | l | l | l | } \hline \text{Either} & \text{Or} & \text{Or} \\ y-1 =0 & y-2 = 0 & y-3 =0 \\ \text{or,} y=1 & \text{or, } y = 2 & \text{or,} y =3 \\ \hline \end{tabular} [/math] [br][math] \therefore y = 1,2,3 [/math][br]
1. (a) State factor theorem.[br]Solution:[br]If [math] x-a [/math] is a factor of [math] f(x) [/math] then [math] f(a) = 0 [/math][br]OR[br]If [math] f(a) = 0 [/math] then [math] x-a [/math] is a factor of [math] f(x) [/math].[br][br]1. (b) If [math] (x-a) [/math] is a factor of [math] x^n - a^n [/math], what is the degree of quotient.[br]Solution:[br]The degree of quotient is [math] n - 1 [/math].[br][br]2. In each of the following, use factor theorem to find whether [math] g(x) [/math] is a factor of polynomial [math] f(x) [/math] or not?[br](a) [math] f(x) = x^3 + 9x^2 + 27x + 27; \ \ \ g(x) = x + 3 [/math][br]Solution:[br]Here, [math] f(x) = x^3+9x^2+27x+27 [/math][br]And [math] g(x) = x+ 3 [/math][br]Zero of [math] x+3 [/math] is [math] - 3 [/math][br][math] \begin{align} \text{ Remainder } & = f (-3) \\ & = (-3)^3+9(-3)^2+27(-3) + 27 \\ & = -27 + 81 - 81 + 27 \\ & = 0 \end {align} [/math] [br][math] \therefore \ g(x) [/math] is a factor of polynomial [math] f(x).[/math][br][br](b)[math] f(x) = x^3 + x^2 + 27x + 27, g(x) = x + 3 [/math][br]Solution:[br]Here, [math] f(x) = x^3+x^2+27x+27 [/math][br]And [math] g(x) = x+3 [/math] [br]Zero of [math] x+3 [/math].[br][math] \begin{align} \text{Remainder } & = f(-3) \\ & = (-3)^3+(-3)^2+27(-3)+27\\ & = -27 +9 - 81 +27 \\ & = -72 \neq 0 \end{align} [/math][br][math] \therefore g(x) [/math] is not a factor of polynomial [math] f(x) [/math]. [br][br](c) [math] f(x) = x^3 + 6x^2 + 7x + 9, g(x) = x – 2 [/math][br]Solution:[br]Here, [math] f(x) = x^3+6x^2+7x+9 [/math][br]And [math] g(x) = x-2 [/math][br]Zero of [math] x-2 [/math] is 2.[br][math] \begin{align} \text{Remainder } & = f(2) \\ & = 2^3+6(2)^2+7(2)+9 \\ & = 8 + 24 + 14 + 9 \\ & = 55 \neq 0 \end{align} [/math][br][math] \therefore g(x) [/math] is not a factor of polynomial [math] f(x) [/math]. [br][br](d) [math] f(x) = 3x^3 + x^2 – 20x + 12, g(x) = 3x – 2 [/math][br]Solution:[br]Here, [math] f(x) = 3x^3 + x^2 – 20x + 12 [/math][br]And [math] g(x) = 3x – 2 [/math][br]Zero of [math] 3x – 2 [/math] is [math] \frac{2}{3} [/math].[br][math] \begin{align} \text{Remainder } & = f\left(\frac{2}{3}\right) \\ & = 3\left(\frac{2}{3}\right) ^3+\left(\frac{2}{3}\right) ^2-20\left(\frac{2}{3}\right) +12 \\ & = 3\left(\frac{8}{27}\right) + \frac{4}{9}-\frac{40}{3} +12 \\ & = \frac{8+4-40\times 3 + 12\times 9 }{9} \\ & = \frac{8+4-120+180}{9} \\ & = \frac{0}{9} \\ & = 0 \end{align} [/math][br][math] \therefore g(x) [/math] is a factor of polynomial [math] f(x) [/math]. [br][br](e) [math] f(x) = 8x^3 – 4x^2 + 7x + 9; g(x) = 2x + 1 [/math][br]Solution:[br]Here, [math] f(x) = 8x^3 – 4x^2 + 7x + 9 [/math][br]And [math] g(x) = 2x + 1 [/math][br]Zero of [math] 2x + 1 [/math] is [math] \frac{-1}{2} [/math].[br][math] \begin{align} \text{Remainder } & = f\left(\frac{-1}{2}\right) \\ & = 8\left(\frac{-1}{2}\right)^3-4\left(\frac{-1}{2}\right)^2+7\left(\frac{-1}{2}\right)+9 \\ & = 8\left(\frac{-1}{8}\right) -4\left(\frac{1}{4}\right)-\frac{7}{2}+9 \\ & = -1-1-\frac{7}{2}+9 \\ & = \frac{-2-2-7+18}{2} \\ & = \frac{7}{2} \neq 0 \end{align} [/math][br][math] \therefore g(x) [/math] is not a factor of polynomial [math] f(x) [/math]. [br][br]3. (a) Find the value of [math] k [/math] , if [math] x + 3 [/math] is a factor of [math] 3x^2 + kx + 6 [/math][br]Solution:[br]Let, [math] f(x) = 3x^2+kx+6 [/math] [br]Zero of [math] x+3 [/math] is -3.[br]As [math] x+3 [/math] is a factor of f(x),[br][math] \begin{align} & \text{Remainder } = 0 \\ & \text{ or, } f(-3 ) = 0 \\ & \text{ or, } 3(-3)^2+k(-3)+6=0 \\ & \text{ or, } 27-3k+6=0 \\ & \text{ or, } 33=3k \\ & \text{ or, } k=\frac{33}{11} \\ & \therefore k=11 \end{align} [/math] [br][br][br]3. (b) Find the value of [math] k [/math], if [math] x + 1[/math] is a factor of [math] x^3 – kx^2 – 3x – 6 [/math] [br]Solution:[br]Let, [math] f(x) = x^3 – kx^2 – 3x – 6 [/math] [br]Zero of [math] x+1 [/math] is -1.[br]As [math] x+3 [/math] is a factor of f(x),[br][math] \begin{align} & \text{Remainder } = 0 \\ & \text{ or, } f(-1 ) = 0 \\ & \text{ or, } (-1)^3-k(-1)^2-3(-1)-6 =0 \\ & \text{ or, } -1-k+3-6=0 \\ & \text{ or, } -k-4=0 \\ & \text{ or, } -k=4 \\ & \therefore k=-4 \end{align} [/math] [br][br]3. (c) Find the value of [math] m [/math], for which [math] 2x^4 – 4x^3 + mx^2 + 2x + 1 [/math] is exactly divisible by [math]1 – 2x.[/math][br]Solution:[br]Let, [math] f(x) = 2x^4 – 4x^3 + mx^2 + 2x + 1 [/math] [br]Zero of [math] 1 – 2x [/math] is [math] \frac{1}{2} [/math] .[br]As [math] 1 – 2x [/math] is a factor of f(x),[br][math] \begin{align} & \text{Remainder } = 0 \\ & \text{ or, } f( \frac{1}{2}) = 0 \\ & \text{ or, } 2\left( \frac{1}{2} \right)^4 -4 \left( \frac{1}{2} \right)^3 +m\left( \frac{1}{2} \right)^2 +2\left( \frac{1}{2}\right)+1=0 \\ & \text{ or, } 2\times \frac{1}{16} -4\times \frac{1}{8} +m\times \frac{1}{4}+1+1=0\\ & \text{ or, } \frac{1}{8}-\frac{1}{2}+\frac{m}{4}+2=0 \\ & \text{ or, } \frac{1-4+2m+16}{8} = 0 \\ & \text{ or, } [br] 2m+13 = 0 \\ & \text{ or, } 2m= -13 \\ & \therefore m = - \frac{13}{2} \end{align} [/math] [br][br]4. Factorize the following by using factor theorem.[br](a) [math] 2x^3 + 3x^2 – 3x – 2 [/math] [br]Solution:[br]Let, [math] f(x) = 2x^3 + 3x^2 – 3x – 2 [/math][br]Possible factors of 2 are [math] \pm 1, \pm 2 [/math][br][math] \begin{align} \text{Now}, \\ f(1) & = 2(1)^3+3(1)^2 -3(1)-2 \\ & = 2 +3-3 -2 \\ & = 0 \end{align} [/math][br][math] \therefore x-1 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } & = 2x^2+5x+2 \\ & = 2x^2 +(4+1)x +2 \\ & = 2x^2 +4x+x+2 \\ & = 2x(x+2) +1 (x+2) \\ & = (x+2)(2x+1) \\ \therefore f(x) & = (x-1) (x+2) (2x+1) \end{align} [/math][br][br]4(b) [math] x^3 + 2x^2 - x -2 [/math][br]Solution:[br]Let, [math] f(x) = x^3 + 2x^2 - x -2 [/math][br]Possible factors of 2 are [math] \pm 1, \pm 2 [/math][br][math] \begin{align} \text{Now}, \\ f(1) & = (1)^3+2(1)^2 -1-2 \\ & = 1+2-1-2 \\ & = 0 \end{align} [/math][br][math] \therefore x-1 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } & = x^2+3x+2 \\ & = x^2 +(2+1)x +2 \\ & = x^2 + 2x +x +2 \\ & = x(x+2)+1(x+2) \\ & = (x+2)(x+1) \\ \therefore f(x) & = (x-1)(x+2)(x+1) \end{align} [/math][br][br]4(c) [math] y^3 - 6y^2 + 3y + 10 [/math][br]Solution:[br]Let, [math] f(y) = y^3 - 6y^2 + 3y + 10 [/math][br]Possible factors of 2 are [math] \pm 1, \pm 2 , \pm 5, \pm 10 [/math][br][math] \begin{align} \text{Now}, \\ f(2) & = 2^3-6(2)^2+3(2)+10 \\ & = 8-24+6+10 \\ & = 0 \end{align} [/math][br][math] \therefore y -2 [/math] is a factor of [math] f(y) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} f(y) & = y^2 - 4y -5 \\ & = y^2 - (5-1)y-5 \\ & = y^2 -5y + y -5 \\ & = y(y-5) +1(y-5) \\ & = (y-5)(y+1) \\ \therefore f(y) & = (y-2)(y-5)(y+1) \end{align}[/math][br][br]4(d) [math] x^3 + 13x^2 + 32x + 20 [/math] [br]Solution:[br]Let, [math] f(x) = x^3 + 13x^2 + 32x + 20 [/math][br]Possible factors of 2 are [math] \pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20 [/math][br][math] \begin{align} \text{Now}, \\ f(-2) & = (-2)^3+13(-2)^2+32(-2)+20 \\ & = -8+52-64+20 \\ & = 0 \end{align} [/math][br][math] \therefore x+2 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } & = x^2 + 11x+ 10 \\ & = x^2 + 10x + x + 10 \\ & = x(x+10) + 1( x+10) \\ & = (x+10)(x+1) \\ \therefore f(x) & = (x+1)(x+2)(x+10) \end{align} [/math][br][br]4(e) [math] 2x^3 + x^2 – 2x – 1 [/math][br]Solution:[br]Let, [math] f(x) = 2x^3 + x^2 – 2x – 1 [/math][br]Possible factors of 2 are [math] \pm 1, \pm \frac{1}{2} [/math][br][math] \begin{align} \text{Now}, \\ f(1) & = 2(1)^3+1^2-2(1)-2 \\ & = 2+1-2-1 \\ & = 0 \end{align} [/math][br][math] \therefore x-1 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient} & = 2x^2+3x+1 \\ & = 2x^2 + 2x + x + 1 \\ & = 2x(x+1) + 1(x+1) \\ & = (x+1)(2x+1) \\ \therefore f(x) & = (x-1)(x+1)(2x+1) \end{align} [/math][br][br]4(f) [math] x^3 – 23x^2 + 142x – 120 [/math][br]Solution:[br]Let, [math] f(x) = x^3 – 23x^2 + 142x – 120 [/math][br]Possible factors of 2 are [math] \pm 1, \pm 2, \pm 3, \pm 5 \text{ etc } [/math][br][math] \begin{align} \text{Now}, \\ f(1) & = 1^3-23(1)^2+142(1)-120 \\ & =1 -23 + 142 -120 \\ & = 0 \end{align} [/math][br][math] \therefore x-1 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } & = x^2 - 22x + 120 \\ & = x^2 - 12x - 10x +120 \\ & = x(x-12) -10(x-12) \\ & = (x-12)(x-10) \\ \therefore f(x) & = (x-1)(x-10)(x-12) \end{align} [/math][br][br]4(g) [math] (x – 1) (2x^2 + 15x + 15) – 21 [/math] [br]Solution:[br][math] \begin{align} \text{Let, } f(x) & = (x – 1) (2x^2 + 15x + 15) – 21\\ & = 2x^3 +15x^2+15x-2x^2-15x-15-2 \\ & = 2x^3+13x^2-36 \end{align} [/math][br]Possible factors of 36 are [math] \pm 1, \pm 2, \pm 3, \pm 4 \text{ etc } [/math][br][math] \begin{align} \text{Now}, \\ f(-2) & = 2(-2)^3+13(-2)^2-36 \\ & =-16+52-36 \\ & = 0 \end{align} [/math][br][math] \therefore x+2 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } & = 2x^2+9x-18 \\ & = 2x^2 +12x - 3x - 18 \\ & = 2x(x+6) -3 (x+6) \\ & = (x+6)(2x-3) \\ \therefore f(x) & = (x+2)(x+6)(2x-3) \end{align} [/math][br][br]5. Use factor theorem and solve for [math] x [/math].[br](a) [math] x^3 – 4x^2 – 7x + 10 = 0 [/math] [br]Solution:[br]Let [math] f(x) = x^3-4x^2-7x+10 [/math][br]Possible factors of 10 are [math] \pm 1, \pm 2, \pm 5, \pm 10 [/math][br][math] \begin{align} \text{Now, } f(1) & = 1^3-4(1)^2-7(1)+10 \\ & = 1-4-7+10 \\ & = 0 \end{align} [/math][br][math] \therefore x-1 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } & = x^2 - 3x -10 \\ & = x^2 -5x + 2x - 10 \\ & = x(x-5) + 2(x-5) \\ & = (x-5)(x+2) \\ \therefore f(x) & = (x-1)(x-5)(x+2) \\ \text{or, } 0 & = (x-1)(x-5)(x+2) \end{align} [/math][br][math][br]\begin{tabular}{|l |l |l | }[br]\hline[br]\text{Either} & \text{Or} & \text{Or} \\[br]x-1=0 & x-5 = 0 & x+2 =0 \\[br]\text{or, } x =1 & \text{or, } x=5 & \text{or, } x= -2 \\[br]\hline[br]\end{tabular}[br][/math][br][math] \therefore x= 1, 5, -2 [/math][br][br]5(b) [math] x^3 + 4x^2 + x – 6 = 0 [/math][br]Solution:[br]Let [math] f(x) = x^3+4x^2+x-6 [/math] [br]Possible factors of 6 are [math] \pm 1, \pm 2, \pm 3, \pm 6 [/math][br][math] \begin{align} \text{ Now, } f(1) & = 1^3+4(1)^2+1-6 \\ & = 1+4+1 -6 \\ & = 6-6 \\ & = 0 \end{align} [/math] [br][math] \therefore x-1 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{ Quotient } & = x^2 +5x+6 \\ & = x^2 +3x+2x+6 \\ & = x(x+3) +2 (x+3) \\ & = (x+3)(x+2) \\ \therefore f(x) & = (x-1)(x+2) (x+3) \\ \text{or, } 0 & = (x-1)(x+2)(x+3) \end{align} [/math][br][math] \begin{tabular} { | l | l | l | } \hline \text{ Either } & \text{Or } & \text { Or } \\ x-1 =0 & x+2= 0 & x+3 = 0 \\ \text {or, } x=1 & \text{or, } x=-2 & \text {or, } x = -3 \\ \hline \end{tabular} [/math][br][math] \therefore x = 1, -2, -3 [/math][br][br]5(c) [math] 3x^3 – x^2 – 3x + 1 = 0 [/math][br]Solution:[br]Let [math] f(x) = 3x^3-x^2-3x+1 [/math][br]Possible factors are [math] \pm 1, \pm \frac{1}{3} [/math][br][math] \begin{align} \text{Now, } f(1) &= 3(1)^3-1^2-3(1)+1 \\ & = 3-1-3+1 \\ & = 0 \end{align} [/math][br][math] \therefore x - 1 [/math] is a factor of [math] f(x) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient} & = 3x^2 +2x-1 \\ & = 3x^2+3x-x-1 \\ & = 3x(x+1) -1(x+1) \\ & = (x+1)(3x-1)\\ \therefore f(x) & = (x-1)(x+1)(3x-1) \\ \text{or, } 0 & = (x-1)(x+1)(3x-1) \end{align} [/math][br][math] \begin{tabular}{ | l | l | l | } \hline \text{Either} & \text{ Or} & \text{Or } \\ x-1 =0 & x+1 = 0 & 3x-1 = 0 \\ \text{or, } x=1 & \text{or, } x=-1 & \text{or, } x =\frac{1}{3}\\ \hline \end{tabular} [/math][br][math] \therefore x= \pm 1, \frac{1}{3} [/math] [br]5(d) [math] x^3-3x^2-9x-5=0 [/math] [br]Solution:[br]Let, [math] f(x) = x^3-3x^2-9x-5=0 [/math][br]Possible factors of 5 are [math] \pm 1, \pm 5 [/math][br][math] \begin{align} f(-1) & = (-1)^3-3(-1)^2-9(-1)-5 \\ & = -1-3+9-5 \\ = & 0 \end{align} [/math] [br][math] \therefore x +1 [/math] is a factor of [math] f(x) [/math][br]Now using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } & = x^2-4x-5 \\ & = x^2 -5x+x-5 \\ & = x(x-5) + 1(x-5) \\ & = (x-5)(x+1) \\ \therefore f(x) & = (x+1)(x+1)(x-5) \\ \text{or, } 0 & = (x+1)(x+1)(x-5) \end{align} [/math][br][math] \begin{tabular} {|l|l|l|} \hline \text{Either} & \text{Or } & \text{Or } \\ x+1=0 & x+1 =0 & x-5= 0 \\ \text{or, } x= -1 & \text{or, } x= -1 & \text{or, } x= 5 \\ \hline \end{tabular} [/math][br] [br]5(e) [math] x^3 – 3x^2 – 10x + 24 = 0 [/math][br]Solution:[br]Let, [math] f(x) = x^3 – 3x^2 – 10x + 24 [/math][br]Possible factors of 24 are [math] \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 24 [/math][br][math] \begin{align} \text{Now, } f(2) & = 2^3 -3(2)^2-10(2)+24 \\ & = 8-12-20+24\\ & = 32 - 32 \\ & = 0 \end{align} [/math] [br][math] \therefore x -2 [/math] is a factor of [math] f(x) [/math] [br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } & = x^2-x-12 \\ & = x^2 -(4-3)x -12 \\ & = x^2 -4x+3x-12 \\ & = x(x-4)+3(x-4) \\ & = (x-4)(x+3) \\ \therefore f(x) & = (x-2)(x-4)(x+3) \\ \text{or, } 0 & = (x-2)(x-4)(x+3) \end{align} [/math] [br][math] \begin{tabular}{|l|l|l| } \hline \text{Either} & \text{Or} & \text{Or}\\[br]x-2=0 & x-4 =0 & x+3 =0 \\[br]\text{or, } x =2 & \text{or, } x=4 & \text{or, } x=-3 \\ \hline \end{tabular} [/math][br][math] \therefore x = 2,4,-3 [/math][br][br]5(f) [math] y^3 + 11y = 6y^2 + 6 [/math][br]Solution:[br]Given,[br][math] y^3+11y=6y^2+6 \\ or, y^3-6y^2+11y-6 = 0 [/math][br][math] \text{Let, } f(y) =y^3-6y^2+11y-6 [/math] [br]Possible factors of 6 are [math] \pm 1, \pm 2, \pm 3, \pm 6 [/math][br][math] \begin{align} \text{Now, } f(1) & = 1^3-6(10^2+11(1)-6 \\ & = 1-6+11-6 \\ & = 0 \\ \end{align} [/math] [br][math] \therefore y-1 [/math] is a factor of [math] f(y) [/math][br]Now, using synthetic division, we get,[br][img][/img][br][math] \begin{align} \text{Quotient } &= y^2-5y+6 \\ & = y^2 - 3y -2y + 6 \\ & = y(y-3) -2(y-3) \\ & = (y-3)(y-2) \\ \therefore f(y) & = (y-1)(y-2)(y-3) \\ \text{or, } 0 & = (y-1)(y-2)(y-3) \end{align} [/math][br][br][math] \begin{tabular}{ | l | l | l | } \hline \text{Either} & \text{Or} & \text{Or} \\ y-1 =0 & y-2 = 0 & y-3 =0 \\ \text{or,} y=1 & \text{or, } y = 2 & \text{or,} y =3 \\ \hline \end{tabular} [/math] [br][math] \therefore y = 1,2,3 [/math][br]

Information: Unit 1.2.3 (B) : Factor theorem