IM Geo.3.11 Practice: Splitting Triangle Sides with Dilation, Part 2

[size=150]Segment [math]A'B'[/math] is parallel to segment [math]AB[/math].[/size][br][img][/img][br]What is the length of segment [math]AB[/math]?[br]
What is the length of segment [math]B'B[/math]?[br]
Explain how you know that segment [math]DE[/math] is not parallel to segment [math]BC[/math].[br][img][/img]
[size=150]In right triangle [math]ABC[/math], [math]AC=4[/math] and [math]BC=5[/math]. A new triangle [math]DEC[/math] is formed by connecting the midpoints of [math]AC[/math] and [math]BC[/math].[/size][br][img][/img][br]What is the area of triangle [math]ABC[/math]?
What is the area of triangle [math]DEC[/math]?[br]
Does the scale factor for the side lengths apply to the area as well?[br]
Which of these statements is true?
Are triangles [math]ABC[/math] and [math]DEF[/math] similar in the applet below? Show or explain your reasoning. [br]
If possible, find the length of [math]EF[/math]. If not, explain why the length of [math]EF[/math] cannot be determined. [br]
What is the length of segment [math]DF[/math] in the applet below?
The triangle [math]ABC[/math] is taken to triangle [math]A'B'C'[/math] by a dilation. Select [b]all [/b]of the scale factors for the dilation that would result in an image that was [i]smaller[/i] than the original figure.
Cerrar

Información: IM Geo.3.11 Practice: Splitting Triangle Sides with Dilation, Part 2