Given above is a right triangle named △TEH.[br]Assume that EB is the altitude to the hypotenuse TH. Complete[br]the table below.[br][br][br][table] [tr] [td][br] [b]Triangle[/b][br][br] [/td] [td][br] [b]Right Angles[/b][br][br] [/td] [td][br] [b]Hypotenuse[/b][br][br] [/td] [td][br] [b]Acute Angles[/b][br][br] [/td] [td][br] [b]Shorter Leg[/b][br][br] [/td] [td][br] [b]Longer Leg[/b][br][br] [/td] [/tr] [tr] [td][br] △ TEH[br] [/td] [td][br] ∠TEH[br] [/td] [td][br] [img width=20,height=19]file:///C:/Users/User/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png[/img]TH[br] [/td] [td][br] 1[br] [/td] [td][br] 2[br] [/td] [td][br] 3[br] [/td] [/tr] [tr] [td][br] △ EBT[br] [/td] [td][br] 4[br] [/td] [td][br] 5[br] [/td] [td][br] 6[br] [/td] [td][br] 7[br] [/td] [td][br] 8[br] [/td] [/tr] [tr] [td][br] △ EBH[br] [/td] [td][br] 9[br] [/td] [td][br] 10[br] [/td] [td][br] 11[br] [/td] [td][br] 12[br] [/td] [td][br] 13[br] [/td] [/tr][/table][br][br][br][br]
1. ∠ETH, ∠EHT[br]2. ET[br]3. EH[br]4. ∠EBT[br]5. ET[br]6. ∠ETB, ∠BET[br]7. BT[br]8. EB[br]9. ∠EBH[br]10. EH[br]11. ∠BHE,∠HEB[br]12. EB[br]13. BH
Using the rule of similarity on right triangles, complete the ratio below represented by their line segments.[br][br][math]△TEH\sim△EBT,[br]\frac{EB}{BT}=?[/math],
[math]\frac{HE}{ET}[/math]
Using the rule of similarity on right triangles, complete the ratio below represented by their line segments.[br][br][math]△TEH\sim△EBH,\frac{EH}{TH}=?[/math],
[math]\frac{BH}{EH}[/math]
Using the rule of similarity on right triangles, complete the ratio below represented by their line segments.[br][br][math]△EBH\sim△EBT,\frac{EH}{EB}=?[/math],
[math]\frac{ET}{BT}[/math]
Answer the following questions to satisfy the conditions of the similarity on right triangles.[br]1. If [i]c [/i]= 3 and [i]n= [/i]12, find [i]b.[/i][br][br]2. If [i]c [/i]= 6 and [i]n= [/i]18, find [i]y.[/i][br][br]3. If [i]n= [/i]8 and [i]c= [/i]4.5, find [i]a.[/i]
1. b=6[br][br]2. y=12[br][br]3. a= 10
Bernabe and Dilao (2009). Geometry. [i]Similarity on right triangles, [/i]p. 16.[br][br]Congruent Triangles (2011). Math Open Reference.[br]https://www.mathopenref.com/congruenttriangles.html[br][br]DepEd (2016). K-12 Math Curriculum Guide.[br]https://www.deped.gov.ph/wp-content/uploads/2019/01/Math-CG_with-tagged-mathequipment.pdf[br][br]DepEd (2020). K to 12 Most Essential Learning Competencies with Corresponding CG Codes.[br]https://commons.deped.gov.ph/K-to-12-MELCS-with-CG-Codes.pdf[br][br]Palma, M. (n.d.) Triangle Maker. GeoGebra (2020). https://www.geogebra.org/m/JHgTXKrt[br][br]Similar Triangles (2011). Math Open Reference.[br]https://www.mathopenref.com/similartriangles.html[br][br]Triangles (2011). Math Open Reference. https://www.mathopenref.com/triangle.html[br][br]Triangles (2020). GeoGebra. https://www.geogebra.org/t/triangles?lang=en