Cycloid

[url=https://en.wikipedia.org/wiki/Cycloid]Cycloid[/url] is the [url=https://en.wikipedia.org/wiki/Curve]curve[/url] traced by a point on a [url=https://en.wikipedia.org/wiki/Circle]circle[/url] as it rolls along a [url=https://en.wikipedia.org/wiki/Line_(geometry)]straight line[/url] without slipping. A cycloid is an example of a [url=https://en.wikipedia.org/wiki/Roulette_(curve)]roulette[/url], a curve generated by a curve rolling on another curve.[br]Cykloidy jsou trajektkorie bodů při odvalování kružnice h po přímce p. Prostá cykloida je trajektorie bodu dotyku T.
Construction:[br]Step 2 - Moved centroid [i]h[/i] rolls along line [i]p[/i]. Animation parametr is rotation angle α.[br]Step 3 - Arc [i]TT'[/i] corresponding to the given central angle α.[br]Step 4 - Mesure the radius r of moved circle h.[br]Step 5 - Rectification of arc [i]TT'[/i] - constrat the segment [i]TT''[/i] with the length equal to the [url=https://en.wikipedia.org/wiki/Arc_length]arc length[/url] [i]TT'[/i].[br] [i]TT''[/i] = t . α[br]Step 7 - New position of circle [i]h[/i], angle α anf point [color=#1e84cc][i]T[/i][/color], Point [i]T''[/i] is a new touching point. [br]Step 8 - Locus of all positions of point T is cycloid (tool Trace)
Close

Information: Cycloid