IM Alg2.2.13 Practice: Polynomial Division (Part 2)

[size=150]The polynomial function [math]B(x)=x^3-21x+20[/math] has a known factor of [math](x-4)[/math].[br][/size]Rewrite [math]B(x)[/math] as a product of linear factors.
[size=150]Let the function [math]P[/math] be defined by [math]P(x)=x^3+7x^2-26x-72[/math] where  is a factor [math](x+9)[/math].   [br]To rewrite the function as the product of two factors, long division was used but an error was made:[br][img][/img][br][/size]How can we tell by looking at the remainder that an error was made somewhere?
[size=150]For the polynomial function [math]A(x)=x^4-2x^3-21x^2+22x+40[/math] we know [math](x-5)[/math] is a factor. [/size][br]Select [b]all[/b] the other linear factors of A(x).
Match the polynomial function with its constant term.
What are the solutions to the equation [math](x-2)(x-4)=8[/math]?
The graph of a polynomial function f is shown.
[img][/img][br]Which statement is true about the end behavior of the polynomial function?
[size=150]The polynomial function [math]p(x)=x^3+3x^2-6x-8[/math] has a known factor of [math](x+4)[/math].[/size][size=150][br][/size][br]Rewrite [math]p(x)[/math] as the product of linear factors.[br]
Draw a rough sketch of the graph of the function.
Close

Information: IM Alg2.2.13 Practice: Polynomial Division (Part 2)