Exploration Monday: Polygons, Kites, Trapezoids

Explore this App:
[b][size=150][color=#9900ff]What is the relationship between the [/color]number of sides[color=#9900ff] and the [br]number of [/color][u]Diagonals joining A[/u][color=#9900ff] in a convex polygon?[/color][/size][/b]
[b][size=150][color=#9900ff]What is the relationship between the [/color]number of sides[color=#9900ff] and the [/color]number of triangles[color=#9900ff] formed by the [/color][u]Diagonals joining A[/u][color=#9900ff]?[/color][/size][/b]
[b][size=150][color=#9900ff]Using [/color][size=200]N[/size][color=#9900ff] to represent the number of sides, write the formula to calculate the SUM of the measures of all interior angles of a polygon.[/color][/size][/b]
[b][color=#9900ff][size=150]What does this app reveal about the sum of the measures of the interior angles of a quadrilateral?[/size][/color][/b]
[b][color=#9900ff][size=150]Does the shape of the quadrilateral make a difference?[br][/size][/color][/b][color=#ff0000] >> TRY different quadrilaterals by moving the vertices! [points A, B, C, or D][/color]
Using the Polygon tool, create a convex pentagon, a convex hexagon, a regular decagon.
[size=150][color=#9900ff][b]Measure each interior angle. Add the angle measurements to find the sum for each polygon:[br][/b][/color][color=#ff0000] >> Hint: click inside the polygon with the [icon]/images/ggb/toolbar/mode_angle.png[/icon] tool to measure all angles at once.[br][/color][/size](three answers required)
[b][color=#9900ff][size=150]Calculate 180º•[/size][/color][/b][b][color=#9900ff][size=150](N-2)[/size][/color][/b][size=150][color=#9900ff] for each polygon:[/color] (pentagon, hexagon, decagon) [/size][color=#ff0000][i](three answers required)[/i][/color]
[b][size=150][color=#9900ff]Compare the results of [/color]Task 9[color=#9900ff] and [/color]Task 10 [color=#9900ff]:[/color][/size][/b]
[size=200][b][color=#980000]_______________________[/color][/b][b][color=#980000]_______________________[/color][/b][b][color=#980000]__[/color][/b][/size]
Using the Regular Polygon tool, create a regular decagon.
[b]Extend one side using the Ray tool[icon]/images/ggb/toolbar/mode_ray.png[/icon], then place a Point on that ray.[/b]
[b][size=150][color=#9900ff]Measure an [/color]EXTERIOR ANGLE[color=#9900ff] of the regular decagon.[br]What is the sum of the measures of all 10 exterior angles of the decagon?[/color][/size][/b]
[b][size=150][color=#9900ff]Does this result agree with the [/color]Polygon Exterior Angle-Sum Theorem[color=#9900ff]?[/color][/size][/b]
[b][size=150][color=#9900ff]Use the measure of an [/color]EXTERIOR[color=#9900ff] angle in [/color]Task 13 [/size][/b][b][size=150][color=#9900ff] to calculate the measure of one [/color]INTERIOR[color=#9900ff] angle of the regular decagon.[/color][/size][/b]
[size=200][b][color=#980000]_______________________[/color][/b][b][color=#980000]_______________________[/color][/b][b][color=#980000]__[/color][/b][/size]
Construct a Kite:
[color=#9900ff][size=150][b]Is your kite indestructible?[br][/b][/size][/color](Can you neighbor "break" it?)
[size=200][b]>>> [/b][url=https://www.geogebra.org/m/embgqewx][b][color=#ff0000]Hints on making an indestructible kite[/color][/b][/url][/size]
[size=200][b][color=#980000]_______________________[/color][/b][b][color=#980000]_______________________[/color][/b][b][color=#980000]__[/color][/b][/size]
Construct a Trapezoid:
[color=#9900ff][size=150][b]Is your trapezoid indestructible?[br][/b][/size][/color](Can you neighbor "break" it?)
[b][size=200]>>> [url=https://www.geogebra.org/m/wvvqdqx4][color=#ff0000]Hints on making an Isosceles Trapezoid[/color][/url][/size][/b]
[size=200][b][color=#980000]_______________________[/color][/b][b][color=#980000]_______________________[/color][/b][b][color=#980000]__[/color][/b][/size]
[b][color=#9900ff][size=150]Create a conjecture about the opposite angles of a parallelogram:[/size][/color][/b]
[size=150][color=#9900ff][b]Does the sum of the measures of the interior angles of a parallelogram also equal 360º ?[/b][br][/color] [color=#ff0000]>> Check your answer by measuring the interior angles on [/color][b]Task 20[/b][color=#ff0000]. using the [/color][icon]https://www.geogebra.org/images/ggb/toolbar/mode_angle.png[/icon][color=#ff0000] tool. [/color][/size]
Schließen

Information: Exploration Monday: Polygons, Kites, Trapezoids