IM Geo.3.1 Lesson: Scale Drawings

Diego took a picture of a hippo and then edited it.
[img][/img][br][br]Which is the distorted image? How can you tell?
Is there anything about the pictures you could measure to test whether there’s been a distortion?
[size=150]A [b]dilation [/b]with center [math]O[/math] and positive [b]scale factor[/b] [math]r[/math] takes a point [math]P[/math] along the ray [math]OP[/math] to another point whose distance is [math]r[/math] times farther away from [math]O[/math] than [math]P[/math] is. If [math]r[/math] is less than 1 then the new point is really closer to [math]O[/math], not farther away.[/size][br][br]Dilate [math]H[/math] using [math]C[/math] as the center and a scale factor of 3. [math]H[/math] is 40 mm from [math]C[/math].
Dilate [math]K[/math] using [math]O[/math] as the center and a scale factor of [math]\frac{3}{4}[/math]. [math]K[/math] is 40 mm from [math]O[/math].
Here is a figure.
Dilate the figure using center [math]P[/math] and scale factor [math]\frac{1}{2}[/math].
What do you notice? What do you wonder?[br]
Here is a figure:
Dilate segment [math]AB[/math] using center [math]P[/math] by scale factor [math]\frac{1}{2}[/math]. Label the result [math]A'B'[/math].
Dilate the segment [math]AB[/math] using center [math]Q[/math] by scale factor [math]\frac{1}{2}[/math].
How does the length of [math]A''B''[/math] compare to [math]A'B'[/math]?
How would the length of [math]A''B''[/math] change if [math]Q[/math] was infinitely far away? Explain or show your answer.[br]

IM Geo.3.1 Practice: Scale Drawings

Polygon Q is a scaled copy of Polygon P.
[img][/img][br][br]The value of [math]x[/math] is 6, what is the value of [math]y[/math]?[br]
What is the scale factor?
Figure f ​is a scaled copy of Figure e.
[table][tr][td]We know:[br][list][*][math]AB=6[/math][br][/*][*][math]CD=3[/math][br][/*][*][math]XY=4[/math][br][/*][*][math]ZW=a[/math][br][/*][/list][/td][td][img][/img][/td][/tr][/table][br]Select [b]all [/b]true equations.
Solve each equation.
[math]\frac{2}{5}=\frac{x}{15}[/math]
[math]\frac{4}{3}=\frac{x}{7}[/math]
[math]\frac{7}{5}=\frac{28}{x}[/math]
[math]\frac{11}{4}=\frac{5}{x}[/math]
[size=150]Select the shape that has 180 degree rotational symmetry.[/size]
[size=150]Name a quadrilateral in which the diagonal is also a line of symmetry. Explain how you know the diagonal is a line of symmetry. [/size]
In isosceles triangle [math]DAC[/math], [math]AD[/math] is congruent to [math]AC[/math] and [math]AB[/math] is an angle bisector of angle [math]DAC[/math]. [br][img][/img][br]How does Kiran know that [math]AB[/math] is a perpendicular bisector of segment [math]CD[/math]?
In the figure shown, lines [math]f[/math] and [math]g[/math] are parallel. [br][img][/img][br][br]Select [b]all [/b]angles that are congruent to angle 1.

Information