Isogonal transform
The object obtained by collecively taking the conjugates of all its points.
Neuberg cubic (K001)
[size=85]We construct triangle [math]ABC[/math] and then K001 cubic. After that we take point [math]M[/math] which can be any point from the cubic then we cojugate that point isogonal and we get point [math]N[/math] which is also on the same cubic. And by using GeoGebra we conclude that K001 is isogonal transformed of itself.[/size]
Barycentric equation
[math]\sum_{cyclic}\left[a^2\left(b^2+c^2\right)+\left(b^2-c^2\right)-2a^4\right]x\left(c^2y^2-b^2y^2\right)=0[/math]
Proof
[size=85] Let the barycentric coordinates of a point are [math]x[/math], [math]y[/math] and [math]z[/math]. The barycentric coordinates of its isogonal conjugate are [math]\frac{a^2}{x}[/math], [math]\frac{b^2}{y}[/math], [math]\frac{c^2}{z}[/math] or [math]a^2zy[/math], [math]b^2xz[/math] and [math]z^2xy[/math]. And now we substitude [math]x[/math], [math]y[/math] and [math]z[/math] in the equation with [math]a^2zy[/math], [math]b^2xz[/math] and [math]z^2xy[/math].[br][math]\sum_{cyclic}\left[a^2\left(b^2+c^2\right)+\left(b^2-c^2\right)-2a^4\right]x\left(c^2y^2-b^2y^2\right)=0[/math][br][math]\sum_{cyclic}\left[a^2\left(b^2+c^2\right)+\left(b^2-c^2\right)-2a^4\right]a^2zy\left(c^2{(c^2xz)}^2-b^2(z^2xy)^2\right)=0[/math][br][math]\sum_{cyclic}\left[a^2\left(b^2+c^2\right)+\left(b^2-c^2\right)-2a^4\right]a^2zy\left(c^2b^4x^2z^2-b^2z^4x^2y^2\right)=0[/math][br][math]\sum_{cyclic}\left[a^2\left(b^2+c^2\right)+\left(b^2-c^2\right)-2a^4\right]a^2b^2c^2xyzx\left(c^2y^2-b^2z^2\right)=0[/math][br][math]\sum_{cyclic}\left[a^2\left(b^2+c^2\right)+\left(b^2-c^2\right)-2a^4\right]a^2b^2c^2xyzx\left[-(c^2y^2-b^2z^2\right)]=0[/math][br][math]-a^2b^2c^2xyz\sum_{cyclic}\left[a^2\left(b^2+c^2\right)+\left(b^2-c^2\right)-2a^4\right]x\left(c^2y^2-b^2z^2\right)=0[/math][br]In this we get the same equqtion as that in the beginig and this means that Neuberg cubic is isogonal transform of itself.[/size][br][br][br][br][br]
Lucas cubic (K007)
[size=85]Here we construct a triangle [math]ABC[/math]. After that we construct Lucas cubic for this triangle and we take point [math]M[/math] on it then we conjugate [math]M[/math] isogonal and we get point [math]N[/math]. By using GeoGebra we get another cubic, the blue one one the figure. Lucas cubic is isogonal transfom of K172.[/size]
Barycentric equation
[math]\sum_{cyclic}\left(b^2+c^2-a^2\right)x\left(y^2-z^2\right)=0[/math]
[size=85] Here we again sustitude [math]x[/math], [math]y[/math] and [math]z[/math] with [math]a^2zy[/math], [math]b^2xz[/math] and [math]z^2xy[/math].[br][math]\sum_{cyclic}\left(b^2+c^2-a^2\right)a^2yz\left(\left(b^2xz\right)^2-\left(c^2xy\right)^2\right)=0[/math][br][br][math]\sum_{cyclic}\left(b^2+c^2-a^2\right)a^2yz\left(b^4x^2z^2-c^4x^2y^2\right)=0[/math][br][br][math]\sum_{cyclic}\left(b^2+c^2-a^2\right)a^2x^2yz\left[-\left(b^4z^2-c^4y^2\right)\right]=0[/math][br][br][math]xyz\sum_{cyclic}a^2\left(b^2+c^2-a^2\right)x\left(b^4z^2-c^4y^2\right)=0[/math][br][br]But the barycentric equation of the isogonal transform cubic is [math]\sum_{cyclic}a^2S_ax\left(b^4z^2-c^4y^2\right)=0[/math] where [math]S_A=\frac{b^2+c^2-a^2}{2}[/math] and in order to get the same equation we have to multiply [math]\sum_{cyclic}\left(b^2+c^2-a^2\right)a^2x^2yz\left[-\left(b^4z^2-c^4y^2\right)\right]=0[/math] by [math]\frac{2}{2}[/math] and the result is-[br][br][math]2xyz\sum_{cyclic}a^2\frac{\left(b^2+c^2-a^2\right)}{2}x\left(b^4z^2-c^4y^2\right)=0[/math] and this is the same equation as that of the isogonal transform cubic which means that Lucas cubic is isogonal transform of K172.[/size][br][br][br]
Future development
[size=85]In future plans we can try to make the same constructions but for other cojugations as isotomic and cyclocevian conjugation. For isotomic cojugation we change the barycentric coordinates [math]x[/math], [math]y[/math], [math]z[/math] with [math]\frac{1}{x}[/math], [math]\frac{1}{y}[/math], [math]\frac{1}{z}[/math] or [math]yz, xz, xy[/math] but for cylocevian conjugation I have not found what is the change of the barycentric coordinates.[/size]
Acknowledgements
SRS18[br]HSSIMI[br]Nadezhda Aplakova[br]Valcho Milchev[br]Milko Bagdasarov