[size=85]Generating Elements of mesh modeling the surfaces of polyhedron, its dual image and the coloring of their edges and faces can be found in the [url=https://www.geogebra.org/m/h5tvgw57]applet[/url].[/size]
[size=85] Elements in polyhedron Biscribed Pentakis Dodecahedron(2) :[br][b]Vertices[/b]: V =60.[br][b]Faces: [/b] F =32. 20{3}+12{10}[br][b]Edges: [/b] E =90. 30+60 - The order of the number of edges in this polyhedron are according to their length. [br][/size]
[size=85] Truncated dodecahedron : [url=https://en.wikipedia.org/wiki/Truncated_dodecahedron]https://en.wikipedia.org/wiki/Truncated_dodecahedron[/url][br][table][tr][td]Type[/td][td]Archimedean solid[br]Uniform polyhedron[/td][/tr][tr][td]Elements[/td][td][i]F[/i] = 32, [i]E[/i] = 90, [i]V[/i] = 60 (χ = 2)[/td][/tr][tr][td]Faces by sides[/td][td]20{3}+12{10}[/td][/tr][/table][/size]
[size=85]The elements of the [b]dual[/b] to the Biscribed Pentakis Dodecahedron(2): [br][b]Vertices: [/b] V =32.[br][b]Faces: [/b] F =60. 60{3} [br][b]Edges: [/b]E =90. 60+30- The order of the number of edges in this polyhedron are according to their length.[/size]
[size=85]Triakis icosahedron: [url=https://en.wikipedia.org/wiki/Triakis_icosahedron]https://en.wikipedia.org/wiki/Triakis_icosahedron[/url] ???[br][table][tr][td]Face type[/td][td]V3.10.10[url=https://en.wikipedia.org/wiki/File:DU26_facets.png][img width=60,height=22]https://upload.wikimedia.org/wikipedia/commons/thumb/d/de/DU26_facets.png/60px-DU26_facets.png[/img][/url][br][br]isosceles triangle[/td][/tr][tr][td]Faces[/td][td]60[/td][/tr][tr][td]Edges[/td][td]90[/td][/tr][tr][td]Vertices[/td][td]32[/td][/tr][tr][td]Vertices by type[/td][td]20{6}+12{5}[/td][/tr][/table][/size]