IM Alg1.2.21 Lesson: Graphing Linear Inequalities in Two Variables (Part 1)

[size=100][size=150]Here is an expression: [math]2x+3y[/math].[br][br]Decide if the values in each ordered pair, [math]\left(x,y\right)[/math], make the value of the expression less than, greater than, or equal to 12.[/size][/size][br][br][math]\left(0,5\right)[/math]
[math]\left(6,0\right)[/math]
[math]\left(-1,-1\right)[/math]
[math]\left(-5,10\right)[/math]
Here are four inequalities:
[list][*][size=150][math]x\ge y[/math][br][/size][/*][*][size=150][math]\text{-}2y\ge\text{-}a=4[/math][/size][/*][*][size=150][math]3x<0[/math][br][/size][/*][*][size=150][math]x+y>10[/math][/size][/*][/list][size=150][br]Study each inequality assigned to your group and work with your group to:[/size][br][list][*]Find some coordinate pairs that represent solutions to the inequality and some coordinate pairs that do not represent solutions.[/*][*]Plot both sets of points. Either use two different colors or two different symbols like X and O.[/*][*]Plot enough points until you start to see the region that contains solutions and the region that contains non-solutions. Look for a pattern describing the region where solutions are plotted.[/*][/list]
x≥y
-2y≥-4
3x<0
x+y>10
[size=150]Here is a graph that represents solutions to the equation [math]x-y=5[/math][/size][br][br][img][/img][br][size=150][br]Sketch 4 quick graphs representing the solutions to each of these inequalities using the applets below. Drag the red points to adjust the line, select a line style from the dropdown menu, and select on the blank areas on the graph to shade them in.[/size][br]
x-y<5
x-y≤5
x-y>5
x-y≥5
For each graph, write an inequality whose solutions are represented by the shaded part of the graph.
[img][/img]
[img][/img]
[img][/img]
[img][/img]
[size=150]The points [math]\left(7,3\right)[/math] and [math]\left(7,5\right)[/math] are both in the solution region of the inequality [math]x-2y<3[/math].[/size][br][img][/img][br][br]Compute [math]x-2y[/math] for both of these points.
Which point comes closest to satisfying the equation [math]x-2y=3[/math]?
That is, for which [math]\left(x,y\right)[/math] pair is [math]x-2y[/math] closest to 3?
[size=150]The points [math]\left(3,2\right)[/math] and [math]\left(5,2\right)[/math] are also in the solution region.[br][/size][br]Which of these points comes closest to satisfying the equation [math]x-2y=3[/math]?[br]
Find a point in the solution region that comes even closer to satisfying the equation [math]x-2y=3[/math]. [br]What is the value of [math]x-2y[/math]?[br]
For the points [math]\left(5,2\right)[/math] and [math]\left(7,3\right)[/math], [math]x-2y=1[/math]. Find another point in the solution region for which [math]x-2y=1[/math].[br]
Find [math]x-2y[/math] for the point [math]\left(5,3\right)[/math].Then find two other points that give the same answer.[br]

IM Alg1.2.21 Practice: Graphing Linear Inequalities in Two Variables (Part 1)

Here is a graph of the equation 2y-x=1
Are the points [math]\left(0,\frac{1}{2}\right)[/math] and [math]\left(-7,-3\right)[/math] solutions to the equation? Explain or show how you know.[br]
Check if each of these points is a solution to the inequality [math]2y-x>1[/math]:[br][list][*][math](0,2)[/math][br][/*][/list]
[list][*][math]\left(8,\frac{1}{2}\right)[/math][/*][/list]
[list][*][math](\text{-}6,3)[/math][br][br][/*][/list][br]
[list][*][math](\text{-}7,\text{-}3)[/math][/*][/list]
Shade the region that represents the solution set to the inequality 2y - x > 1 by clicking the coordinate plane.
Are the points on the line included in the solution set? Explain how you know.
[size=150]Select [b]all [/b]coordinate pairs that are solutions to the inequality [math]5x+9y<45[/math].[/size]
Consider the linear equation 2y-3x=5.
The pair [math]\left(-1,1\right)[/math] is a solution to the equation. Find another [math]\left(x,y\right)[/math] pair that is a solution to the equation.
Are [math]\left(-1,1\right)[/math] and [math]\left(4,1\right)[/math] solutions to the inequality [math]2y-3x<5[/math]? Explain how you know.[br]
Explain how to use the answers to the previous questions to graph the solution set to the inequality [math]2y-3x<5[/math].[br]
[size=150]The boundary line on the graph represents the equation [math]5x+2y=6[/math]. [br][/size][br][img][/img][br][br]Write an inequality that is represented by the graph.
Choose the inequality whose solution set is represented by this graph.
[img][/img]
Solve each system of equations without graphing.
[math]\begin{cases} 4d+7e=68 \\ \text-4d-6e=\text-72\\ \end{cases}[/math]
[math]\begin{cases} \frac14 x+y=1 \\ \frac32 x-y=\frac43 \\ \end{cases}[/math]
Mai and Tyler are selling items to earn money for their elementary school.
[size=150]The school earns [math]w[/math] dollars for every wreath sold and [math]p[/math] dollars for every potted plant sold. Mai sells 14 wreaths and 3 potted plants and the school earns $70.50. Tyler sells 10 wreaths and 7 potted plants and the school earns $62.50.[br]This situation is represented by this system of equations:[/size][br][math]\begin{cases}14w + 3p = 70.50\\ 10w + 7p = 62.50 \end{cases}[/math][br][br]Explain why it makes sense in this situation that the solution of this system is also a solution to [math]4w+\left(-4p\right)=8.00[/math].
Elena is planning to go camping for the weekend and has already spent $40 on supplies.
[size=150]She goes to the store and buys more supplies.[/size][br][br]Which inequality represents [math]d[/math], the total amount in dollars that Elena spends on supplies?
[size=150]Solve this inequality: [math]\frac{x-4}{3}\ge\frac{x+3}{2}[/math][/size]
[size=150]Which graph represents the solution to [math]\frac{4x-8}{3}\le2x-5[/math]?[/size][br][br]
Solve -x<3.
Explain how to find the solution set.

Information