Graphs of y=f(x+a)

Part A
Using the slider in each graph check what happens when you change the value of [math]a[/math] in [math]f(x)=(x+a)^3[/math], [math]g(x)=\frac{1}{\left(x+a\right)^2}[/math], and [math]h(x)=3^{x+a}[/math] and compare to the original functions [math]f_1, g_1,[/math] and [math]h_1[/math]. [br][br]What is the relationship between the pairs of graphs?
f(x)
g(x)
h(x)
Part B
Can you make a general conjecture about the relationship between the graphs of [math]y=f\left(x\right)[/math] and [math]y=f\left(x+a\right)[/math]from your observations? What happens if [math]a>0[/math]? What if [math]a<0[/math]?

Information: Graphs of y=f(x+a)