Lineare Optimierung - integer Simplex- Zuschnittproblem

cutting-stock problem - simplex integer programm
An order for [br]30 pieces of length 2, [br]10 pieces of length 3[br]and [br]20 pieces of length 4 [br]is to be cut from stock lengths 5, 6, and 9 with[br]costs respectively of 6, 7, and 10[br][br]D,E,F,G,H,I,J Zuschnitt-Muster, D1:J1 standard längen auf Lager (Cutting pattern, stock length)[br][br]Spreadsheet calculation table [math]\longrightarrow[/math] [url=https://www.geogebra.org/m/BpqJ28eP#material/fP8cnZbb]Simplex linear integer prgramm[/url][math]\nearrow[/math][br][list=1][*]X Input tableau transfer from Spreadsheet[/*][*]make Start Tableau for Dual Simplex program (dual simplex minimize programm)[br]doing simplex steps until cost row (last) all elements positiv[/*][*]make minimum number col x5 integer [br]delete col x5 in input tableau (1.) and subtract units produced x5 in row 1[br]input cost 3x6=18 in Z[br][/*][*]make Dual Simplex Tableau [br]doing simplex steps until cost row (last) all elements positiv[/*][*]Puuh, remaining cutting pattern are integers [/*][*]transfer to spreadsheet row 6[br][/*][/list]Zuschnitt[br][list][*]x1=1 - 5 m Standard - 1 Einheit verwendet [/*][*]x4=11 [/*][*]x5=3 - 6 m Standard - 14 Einheiten[/*][*]x6=9 - 9 m Standard - 9 Einheiten[/*][*]Kosten 173+3 x 7=194 für 24 Einheiten[/*][/list][br][url=http://www.dma.ufv.br/maxima/index.php]wxMaxima[/url][math]\nearrow[/math][br][i]load("simplex");[br]minimize_lp([br]x1*6+x2*6+x3*7+x4*7+x5*7+x6*10+x7*10,[[br]x1+x4+3*x5+x6 >= 30, [br]x1+2*x3+x6 >= 10,[br]x2+x4+x6+2*x7 >= 20,[br]x5=6[br]]), nonegative_lp=true, numer;[/i][br][182.0,[x7=4.0,x2=0,x3=0,x6=10,x5=6,x4=2,x1=0]] Kosten[br][br][i]minimize_lp([br]x1*0+x2+x3*0+x4*0+x5*0+x6*0+x7*1,[[br]x1+x4+3*x5+x6 >= 30, [br]x1+2*x3+x6 >= 10,[br]x2+x4+x6+2*x7 >= 20,[br]x5=3[br]]), nonegative_lp=true, numer;[/i][br][0.0,[x7=0,x2=0,x3=0,x6=9.0,x5=3,x4=11.0,x1=1.0]] Verschnitt[br][i]x1*6+x2*6+x3*7+x4*7+x5*7+x6*9+x7*9, x7=0,x2=0,x3=0,x6=9.0,x5=3,x4=11.0,x1=1.0; [/i][br]185.0 Kosten[br][br][url=https://docs.google.com/spreadsheets/d/1gKxW9G7O550szURpzJLdSpxtVAfJFrt6kjItLmlyh_g/edit?gid=121650166#gid=121650166]goolge spreadsheet: Grundlagen Simplex-Algorithmus macro:simplex.js[math]\nearrow[/math][br][img][/img][/url]

Information: Lineare Optimierung - integer Simplex- Zuschnittproblem