Given a solid bounded by planes [math]z=2[/math], [math]y=x^2[/math], [math]y=3[/math] and [math]x=0[/math]. Find the volume of the solid by using double integral.[br][img][/img]
[u][color=#0000ff]https://www.geogebra.org/classic/exybdkcm[/color][/u]