1. (a) Define inverse of function, [math] f:R\to R [/math][br]Solution:[br]If [math] f:A\to B [/math] is one to one onto function then the new function defined from B ot A is called inverse function. It is denoted by [math] f^{-1} : B\to A [/math] .[br][br](b) What is the relation between composition of a function and its inverse.[br]Solution:[br]The relation between composition of a function and its inverse is an identity function. [math] \therefore fof^{-1} (x ) =f^{-1}of(x) = x [/math][br][br]2. Represent the following functions in mapping diagram and find their inverse.[br][br](a) [math] f = \{ (1,2),(2,3),(4,5) \} [/math][br]Solution:[br][img][/img][br][math] \therefore f^{-1} = \{ (2,1), (3,2), (5,4) \} [/math] [br][br](b) [math] g = \{ (1,4),(2,5),(3,6) \} [/math][br]Solution:[br][img][/img][br][math] g^{-1} = \{ (4,1), (5,2), (6,3) \} [/math] [br][br](c) [math] h = \{ (-2,4),(-3,9),(-6,36) \} [/math][br]Solution:[br][img][/img][br][math] h^{-1} = \{ (4,-2), (9,-3), (36,-6) \} [/math] [br][br]3. If [math] f [/math] is the real - valued function, find [br](a) [math] f^{-1}(x) [/math] (b) [math] f^{-1}(6) [/math] (c) [math] f^{-1}\left( \frac{1}{4} \right) [/math] (d) [math] f^{-1}(-2) [/math] in each of the following:[br](i) [math] f(x) = 3x+1 [/math][br]Solution:[br] [math] \begin{align} (a) \ \ [br]\text{Let } & y = f(x) \\[br]\text{or, } & y = 3x+1 \\[br]\text{or, } & y - 1 = 3x \\[br]\text{or, } & \frac{y-1}{3} = x \\[br]\text{or, } & x = \frac{y-1}{3} \\[br]\text{or, } & f^{-1}(y) = \frac{y-1}{3} \\ [br] \therefore \ \ & f^{-1}(x) = \frac{x-1}{3} [br] \end{align} [/math] [br] [math] \begin{align} (b) \ \ [br]\text{Now } & f^{-1}(x) = \frac{x-1}{3} \\[br]\text{or, } & f^{-1}(6) = \frac{6-1}{3} \\[br] \therefore \ \ & f^{-1}(6) = \frac{5}{3} \\[br] \end{align} [/math] [br] [math] \begin{align} (c) \ \ [br]\text{Now } & f^{-1}(x) = \frac{x-1}{3} \\[br]\text{or, } & f^{-1}(\frac{1}{4}) = \frac{\frac{1}{4}-1}{3} \\[br]\text{or, } & f^{-1}(\frac{1}{4}) = \frac{\frac{1-4}{4}}{3} \\[br]\text{or, } & f^{-1}(\frac{1}{4}) = \frac{-3}{12} \\[br]\therefore \ \ & f^{-1}(\frac{1}{4}) = \frac{-1}{4} \\[br] \end{align} [/math] [br] [math] \begin{align} (d) \ \ [br]\text{Now } & f^{-1}(x) = \frac{x-1}{3} \\[br]\text{or, } & f^{-1}(-2) = \frac{-2-1}{3} \\[br]\text{or, } & f^{-1}(-2) = \frac{-3}{3} \\[br] \therefore \ \ & f^{-1}(-2) = - 1 \\[br] \end{align} [/math] [br][br](ii) [math] f(x) = 2x - 5 [/math][br]Solution:[br] [math] \begin{align} (a) \ \ [br]\text{Let } & y = f(x) \\[br]\text{or, } & y = 2x-5 \\[br]\text{ Interchanging} & \text{ the the role of x and y we get,} \\[br]\text{or, } & x=2y-5 \\[br]\text{or, } & x+5 = 2y \\[br]\text{or, } & \frac{x+5}{2} = y \\[br]\text{or, } & y = \frac{x+5}{2} \\ [br] \therefore \ \ & f^{-1}(x) = \frac{x+5}{2} [br] \end{align} [/math] [br] [math] \begin{align} (b) \ \ [br]\text{Now } & f^{-1}(x) = \frac{x+5}{2} \\[br]\text{or, } & f^{-1}(6) = \frac{6+5}{2} \\[br] \therefore \ \ & f^{-1}(6) = \frac{11}{2} \\[br] \end{align} [/math] [br] [math] \begin{align} (c) \ \ [br]\text{Now } & f^{-1}(x) = \frac{x+5}{2} \\[br]\text{or, } & f^{-1}(\frac{1}{4}) = \frac{\frac{1}{4}+5}{2} \\[br]\text{or, } & f^{-1}(\frac{1}{4}) = \frac{\frac{1+20}{4}}{2} \\[br]\text{or, } & f^{-1}(\frac{1}{4}) = \frac{21}{8} \\[br]\therefore \ \ & f^{-1}(\frac{1}{4}) = \frac{21}{8} \\[br] \end{align} [/math] [br] [math] \begin{align} (d) \ \ [br]\text{Now } & f^{-1}(x) = \frac{x+5}{2} \\[br]\text{or, } & f^{-1}(-2) = \frac{-2+5}{2} \\[br]\text{or, } & f^{-1}(-2) = \frac{3}{2} \\[br] \therefore \ \ & f^{-1}(-2) = \frac{3}{2} \\[br] \end{align} [/math] [br][br](iii) [math] f(x) = \frac{x+1}{2} [/math][br]Solution:[br] [math] \begin{align} (a) \ \ [br]\text{Let } & y = f(x) \\[br]\text{or, } & y = \frac{x+1}{2} \\[br]\text{or, } & 2y=x+1 \\[br]\text{or, } & 2y-1=x \\[br]\text{or, } & x = 2y - 1 \\[br]\text{or, } & f^{-1}(y) = 2y-1 \\[br] \therefore \ \ & f^{-1}(x) = 2x-1 \\[br] \end{align} [/math] [br] [math] \begin{align} (b) \ \ [br]\text{Now } & f^{-1}(x) = 2x-1 \\[br]\text{or, } & f^{-1}(6) = 2\times 6 - 1 \\[br]\text{or, } & f^{-1}(6) = 12 - 1 \\[br] \therefore \ \ & f^{-1}(6) = 11 \\[br] \end{align} [/math] [br] [math] \begin{align} (c) \ \ [br]\text{Now } & f^{-1}(x) = 2x - 1 \\[br]\text{or, } & f^{-1}(\frac{1}{4}) = 2\times \frac{1}{4} - 1 \\[br]\text{or, } & f^{-1}(\frac{1}{4}) = \frac{1}{2} - 1 \\[br]\text{or, } & f^{-1}(\frac{1}{4}) = \frac{1-2}{2} \\[br]\therefore \ \ & f^{-1}(\frac{1}{4}) = \frac{-1}{2} \\[br] \end{align} [/math] [br] [math] \begin{align} (d) \ \ [br]\text{Now } & f^{-1}(x) = 2x - 1 \\[br]\text{or, } & f^{-1}(-2) = 2(-2) - 1 \\[br]\text{or, } & f^{-1}(-2) = -4 - 1 \\[br] \therefore \ \ & f^{-1}(-2) = -5 \\[br] \end{align} [/math] [br](iv) [math] f = \left\{ \left(x,\frac{x-2}{x+2}\right), x\neq -2 \right\} [/math] [br]Solution:[br] [math] \begin{align} (a) \ \ [br]\text{Given, } & \\[br] f & = \left\{ \left(x,\frac{x-2}{x+2}\right), x\neq -2 \right\} \\[br]\text{or, } & f(x) = \frac{x-2}{x+2}, x \neq - 2 \\[br]\text{Now, } & \\[br]\text{Let } & y = f(x) \\[br]\text{or, } & y = \frac{x-2}{x+2} \\[br]\text{or, } & xy+2y =x-2 \\[br]\text{or, } & 2y + 2 = x - xy \\[br]\text{or, } & 2y + 2 = x(1-y) \\[br]\text{or, } & \frac{2y + 2}{1-y} = x \\[br]\text{or, } & x = \frac{2y + 2}{1-y} \\[br]\text{or, } & f^{-1}(y) = \frac{2y + 2}{1-y} \\[br] \therefore \ \ & f^{-1}(x) = \frac{2x + 2}{1-x} \\[br] \end{align} [/math] [br] [math] \begin{align} (b) \ \ [br]\text{Now } & f^{-1}(x) = \frac{2x + 2}{1-x} \\[br]\text{or, } & f^{-1}(6) = \frac{2\times 6 + 2}{1- 6 } \\[br]\text{or, } & f^{-1}(6) = \frac{12 + 2}{-5} \\[br]\text{or, } & f^{-1}(6) = \frac{14}{-5} \\[br] \therefore \ \ & f^{-1}(6) = - \frac{14}{ 5} \\[br] \end{align} [/math] [br] [math] \begin{align} (c) \ \ [br]\text{Now } & f^{-1}(x) = \frac{2x + 2}{1-x} \\[br]\text{or, } & f^{-1}(\dfrac{1}{4}) = \dfrac{2\times \dfrac{1}{4} + 2}{1-\dfrac{1}{4}} \\[br]\text{or, } & f^{-1}(\dfrac{1}{4}) = \dfrac{\dfrac{1}{2} + 2}{\dfrac{4-1}{4}} \\[br]\text{or, } & f^{-1}(\dfrac{1}{4}) = \dfrac{\dfrac{1+4}{2}}{\dfrac{4-1}{4}} \\[br]\text{or, } & f^{-1}(\dfrac{1}{4}) = \dfrac{\dfrac{5}{2}}{\dfrac{3}{4}} \\[br]\text{or, } & f^{-1}(\frac{1}{4}) =\frac{5}{2}\times \frac{4}{3} \\[br]\therefore \ \ & f^{-1}(\frac{1}{4}) = \frac{10}{3} \\[br] \end{align} [/math] [br] [math] \begin{align} (d) \ \ [br]\text{Now } & f^{-1}(x) = \frac{2x + 2}{1-x} \\[br]\text{or, } & f^{-1}(-2) = \frac{2(-2) + 2}{1-(-2)} \\[br]\text{or, } & f^{-1}(-2) = \frac{-4 + 2}{1+2} \\[br] \therefore \ \ & f^{-1}(-2) = \frac{-2}{3} \\[br] \end{align} [/math] [br][br]4. If [math] f(x) = x + 1, g(x) = 2x, [/math] find[br][br](a) [math] (fog^{-1})(x) [/math] (b) [math] (gof^{-1}) (x) [/math]. [math] f [/math] and [math] g [/math] are real-valued functions.[br][br]Solution:[br] [math] \begin{align} (a) \ \ [br]\text{Let } & y_1 = g(x) \\[br]\text{or, } & y_1 = 2x \\[br]\text{or, } & \frac{y_1}{2} = x \\[br]\text{or, } & x = \frac{y_1}{2} \\[br]\text{or, } & f^{-1}(y_1) = \frac{y_1}{2} \\[br] \therefore \ \ & f^{-1}(x) =\frac{x}{2} \\[br]\text{Now, } & \\[br](fog^{-1})(x) & = f(g^{-1}(x)) \\[br]\ & = f \left( \frac{x}{2} \right) \\[br]\ & = \frac{x}{2} + 1 \\[br]\ & = \frac{x+2}{2} \\[br]\therefore (fog^{-1})(x) & = \frac{x+2}{2} \\[br] \end{align} [/math] [br] [math] \begin{align} (b) \ \ [br]\text{Let } & y_2 = f(x) \\[br]\text{or, } & y_2 = x+1 \\[br]\text{or, } & y_2 - 1 = x \\[br]\text{or, } & x = y_2 - 1 \\[br]\text{or, } & f^{-1}(y_2) = y_2 - 1 \\[br] \therefore \ \ & f^{-1}(x) = x - 1 \\[br]\text{Now, } & \\[br](gof^{-1})(x) & = g(f^{-1}(x)) \\[br]\ & = g( x - 1 ) \\[br]\ & = 2(x-1) \\[br]\therefore (fog^{-1})(x) & = 2(x-1) \\[br] \end{align} [/math] [br][br]5. (a) If [math] f(x) = 3x - 7, g(x) = \frac{x+2}{5} [/math] and [math] (g^{-1}of)(x) = f(x), [/math] find the value of [math]x [/math], \ \ [math] f \text{ and } g [/math] are real-valued functions.[br][br]Solution:[br] [math] \begin{align} (a) \ \ [br]\text{Let } & y = \frac{x+2}{5} \\[br]\text{or, } & 5y = x + 2 \\[br]\text{or, } & 5y - 2 = x \\[br]\text{or, } & x = 5y - 2 \\[br]\text{or, } & f^{-1}(y ) = 5y - 2 \\[br] \therefore \ \ & f^{-1}(x) = 5x - 2 \\[br]\text{Now, } & \\[br]\ &(g^{-1}of)(x) = f(x), \\[br]\text{or, } & g^{-1} ( f(x) ) = 3x - 7 \\[br]\text{or, } & g^{-1} ( 3x - 7 ) = 3x - 7 \\[br]\text{or, } & 5(3x-7) - 2 = 3x - 7 \\[br]\text{or, } & 15x -35 - 2 = 3x - 7 \\[br]\text{or, } & 15x -35 - 2 = 3x - 7 \\[br]\text{or, } & 15x - 37 = 3x - 7 \\[br]\text{or, } & 15x - 3x = 37 - 7 \\[br]\text{or, } & 12 x = 30 \\[br]\text{or, } & x = \frac{30}{12} \\[br]\text{or, } & x = \frac{5}{2} \\[br] \end{align} [/math] [br][br]5. (b) [math] f [/math] is real-valued function defined as [math] f(x) = 3x+a [/math]. If [math] (fof)(6) = 10 [/math] then find the values of [math] a [/math] and [math] f^{-1}(4) [/math].[br][br]Solution:[br] [math] \begin{align} [br]\text{Given,} & \\[br]\ & f(x) = 3x + a \\[br]\text{Now,} & \\[br]\ & (fof)(6) = 10 \\[br]\text{or, } & f(f(6)) = 10 \\[br]\text{or, } & f( 3\times 6 + a ) = 10 \\[br]\text{or, } & f( 18 + a ) = 10 \\[br]\text{or, } & 3(18+a) + a = 10 \\[br]\text{or, } & 54+3a + a = 10 \\[br]\text{or, } & 4a = 10-54 \\[br]\text{or, } & 4a = -44 \\[br]\text{or, } & a = \frac{-44}{4} \\[br]\text{or, } & a = - 11 \\[br]\therefore \ & f(x) = 3x - 11 \\[br]\text{Now,} & \\[br]\text{Let } & y = f(x) \\[br]\text{or, } & y = 3x -11 \\[br]\text{or, } & y +11 = 3x \\[br]\text{or, } & \frac{y +11}{3} = x \\[br]\text{or, } & x = \frac{y+11}{3} \\[br]\text{or, } & f^{-1}(y) = \frac{y+11}{3} \\[br]\text{or, } & f^{-1}(x) = \frac{x+11}{3} \\[br]\text{or, } & f^{-1}(4) = \frac{4+11}{3} \\[br]\text{or, } & f^{-1}(4) = \frac{15}{3} \\[br]\therefore \ \ & f^{-1}(4) = 5 \\[br] \end{align} [/math] [br] [br]6. Write the formula of volume and surface area of sphere in terms of radius. Find the functional relation and write their inverse.[br]Solution:[br] [math] \begin{align} [br]\text{Let radius of sphere be } x \\[br]\text{Then, volume of sphere } = \frac{4}{3} \pi x^3 \\[br]\therefore \ f(x) = \frac{4}{3} \pi x^3 \\[br]\text{To find inverse }\\[br]\text{Let } y = f(x) \\[br]\text{or, } y = \frac{4}{3} \pi x^3 \\[br]\text{or, } 3y = 4 \pi x^3 \\[br]\text{or, } \frac{3y}{4 \pi } = x^3 \\[br]\text{or, } \sqrt[3]{\frac{3y}{4 \pi } } = x \\[br]\text{or, } x = \sqrt[3]{\frac{3y}{4 \pi } } \\[br]\text{or, } f^{-1}(y) = \sqrt[3]{\frac{3y}{4 \pi } } \\[br]\therefore \ \ f^{-1}(x) = \sqrt[3]{\frac{3x}{4 \pi } } \\[br] \end{align} [/math] [br] [math] \begin{align} [br]\text{Let radius of sphere be } x \\[br]\text{Then, surface area of sphere } = 4 \pi x^2 \\[br]\therefore \ f(x) = 4 \pi x^2 \\[br]\text{To find inverse }\\[br]\text{Let } y = f(x) \\[br]\text{or, } y = 4 \pi x^2 \\[br]\text{or, } \frac{y}{4 \pi } = x^2 \\[br]\text{or, } \pm \sqrt{\frac{y}{4 \pi } } = x \\[br]\text{or, } x = \pm \sqrt{\frac{y}{4 \pi } } \\[br]\text{or, } f^{-1}(y) = \pm \sqrt{\frac{y}{4 \pi } } \\[br]\therefore \ \ f^{-1}(x) = \pm \sqrt{\frac{x}{4 \pi } } [br] \end{align} [/math] [br]